Description: Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ridl0.u | ⊢ 𝑈 = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
| ridl1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | ridl1 | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ridl0.u | ⊢ 𝑈 = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | |
| 2 | ridl1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) | |
| 4 | 3 | opprring | ⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
| 5 | 3 2 | opprbas | ⊢ 𝐵 = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 6 | 1 5 | lidl1 | ⊢ ( ( oppr ‘ 𝑅 ) ∈ Ring → 𝐵 ∈ 𝑈 ) |
| 7 | 4 6 | syl | ⊢ ( 𝑅 ∈ Ring → 𝐵 ∈ 𝑈 ) |