Description: Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ridl0.u | |- U = ( LIdeal ` ( oppR ` R ) ) |
|
ridl1.b | |- B = ( Base ` R ) |
||
Assertion | ridl1 | |- ( R e. Ring -> B e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ridl0.u | |- U = ( LIdeal ` ( oppR ` R ) ) |
|
2 | ridl1.b | |- B = ( Base ` R ) |
|
3 | eqid | |- ( oppR ` R ) = ( oppR ` R ) |
|
4 | 3 | opprring | |- ( R e. Ring -> ( oppR ` R ) e. Ring ) |
5 | 3 2 | opprbas | |- B = ( Base ` ( oppR ` R ) ) |
6 | 1 5 | lidl1 | |- ( ( oppR ` R ) e. Ring -> B e. U ) |
7 | 4 6 | syl | |- ( R e. Ring -> B e. U ) |