Metamath Proof Explorer


Theorem rp-frege4g

Description: Deduction related to distribution. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-frege4g ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( 𝜑 → ( ( 𝜓𝜒 ) → ( 𝜓𝜃 ) ) ) )

Proof

Step Hyp Ref Expression
1 rp-frege3g ( 𝜑 → ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( ( 𝜓𝜒 ) → ( 𝜓𝜃 ) ) ) )
2 ax-frege2 ( ( 𝜑 → ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( ( 𝜓𝜒 ) → ( 𝜓𝜃 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( 𝜑 → ( ( 𝜓𝜒 ) → ( 𝜓𝜃 ) ) ) ) )
3 1 2 ax-mp ( ( 𝜑 → ( 𝜓 → ( 𝜒𝜃 ) ) ) → ( 𝜑 → ( ( 𝜓𝜒 ) → ( 𝜓𝜃 ) ) ) )