Description: Deduction related to distribution. (Contributed by RP, 24-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | rp-frege4g | ⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( 𝜑 → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜃 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rp-frege3g | ⊢ ( 𝜑 → ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜃 ) ) ) ) | |
2 | ax-frege2 | ⊢ ( ( 𝜑 → ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜃 ) ) ) ) → ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( 𝜑 → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜃 ) ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( 𝜑 → ( 𝜓 → ( 𝜒 → 𝜃 ) ) ) → ( 𝜑 → ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜃 ) ) ) ) |