Description: For all positive real numbers there is a smaller positive real number. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpltrp | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 / 2 ) < 𝑥 ) ) | |
| 2 | rphalfcl | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) | |
| 3 | rphalflt | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) < 𝑥 ) | |
| 4 | 1 2 3 | rspcedvdw | ⊢ ( 𝑥 ∈ ℝ+ → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 ) |
| 5 | 4 | rgen | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 |