Metamath Proof Explorer


Theorem rpsqrtcl

Description: The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion rpsqrtcl ( 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 rpre ( 𝐴 ∈ ℝ+𝐴 ∈ ℝ )
2 rpge0 ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 )
3 resqrtcl ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ )
4 1 2 3 syl2anc ( 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ ℝ )
5 rpgt0 ( 𝐴 ∈ ℝ+ → 0 < 𝐴 )
6 sqrtgt0 ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( √ ‘ 𝐴 ) )
7 1 5 6 syl2anc ( 𝐴 ∈ ℝ+ → 0 < ( √ ‘ 𝐴 ) )
8 4 7 elrpd ( 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ ℝ+ )