Metamath Proof Explorer


Theorem rrnmval

Description: The value of the Euclidean metric. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis rrnval.1 𝑋 = ( ℝ ↑m 𝐼 )
Assertion rrnmval ( ( 𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋 ) → ( 𝐹 ( ℝn𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) )

Proof

Step Hyp Ref Expression
1 rrnval.1 𝑋 = ( ℝ ↑m 𝐼 )
2 1 rrnval ( 𝐼 ∈ Fin → ( ℝn𝐼 ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) )
3 2 3ad2ant1 ( ( 𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋 ) → ( ℝn𝐼 ) = ( 𝑥𝑋 , 𝑦𝑋 ↦ ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) ) )
4 fveq1 ( 𝑥 = 𝐹 → ( 𝑥𝑘 ) = ( 𝐹𝑘 ) )
5 fveq1 ( 𝑦 = 𝐺 → ( 𝑦𝑘 ) = ( 𝐺𝑘 ) )
6 4 5 oveqan12d ( ( 𝑥 = 𝐹𝑦 = 𝐺 ) → ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) = ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) )
7 6 oveq1d ( ( 𝑥 = 𝐹𝑦 = 𝐺 ) → ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) = ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) )
8 7 sumeq2sdv ( ( 𝑥 = 𝐹𝑦 = 𝐺 ) → Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) = Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) )
9 8 fveq2d ( ( 𝑥 = 𝐹𝑦 = 𝐺 ) → ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) )
10 9 adantl ( ( ( 𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋 ) ∧ ( 𝑥 = 𝐹𝑦 = 𝐺 ) ) → ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝑥𝑘 ) − ( 𝑦𝑘 ) ) ↑ 2 ) ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) )
11 simp2 ( ( 𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋 ) → 𝐹𝑋 )
12 simp3 ( ( 𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋 ) → 𝐺𝑋 )
13 fvexd ( ( 𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋 ) → ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) ∈ V )
14 3 10 11 12 13 ovmpod ( ( 𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋 ) → ( 𝐹 ( ℝn𝐼 ) 𝐺 ) = ( √ ‘ Σ 𝑘𝐼 ( ( ( 𝐹𝑘 ) − ( 𝐺𝑘 ) ) ↑ 2 ) ) )