Metamath Proof Explorer


Theorem rrnmval

Description: The value of the Euclidean metric. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypothesis rrnval.1 X=I
Assertion rrnmval IFinFXGXFnIG=kIFkGk2

Proof

Step Hyp Ref Expression
1 rrnval.1 X=I
2 1 rrnval IFinnI=xX,yXkIxkyk2
3 2 3ad2ant1 IFinFXGXnI=xX,yXkIxkyk2
4 fveq1 x=Fxk=Fk
5 fveq1 y=Gyk=Gk
6 4 5 oveqan12d x=Fy=Gxkyk=FkGk
7 6 oveq1d x=Fy=Gxkyk2=FkGk2
8 7 sumeq2sdv x=Fy=GkIxkyk2=kIFkGk2
9 8 fveq2d x=Fy=GkIxkyk2=kIFkGk2
10 9 adantl IFinFXGXx=Fy=GkIxkyk2=kIFkGk2
11 simp2 IFinFXGXFX
12 simp3 IFinFXGXGX
13 fvexd IFinFXGXkIFkGk2V
14 3 10 11 12 13 ovmpod IFinFXGXFnIG=kIFkGk2