Metamath Proof Explorer


Theorem rrx2plordso

Description: The lexicographical ordering for points in the two dimensional Euclidean plane is a strict total ordering. (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses rrx2plord.o 𝑂 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑅𝑦𝑅 ) ∧ ( ( 𝑥 ‘ 1 ) < ( 𝑦 ‘ 1 ) ∨ ( ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ∧ ( 𝑥 ‘ 2 ) < ( 𝑦 ‘ 2 ) ) ) ) }
rrx2plord2.r 𝑅 = ( ℝ ↑m { 1 , 2 } )
Assertion rrx2plordso 𝑂 Or 𝑅

Proof

Step Hyp Ref Expression
1 rrx2plord.o 𝑂 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝑅𝑦𝑅 ) ∧ ( ( 𝑥 ‘ 1 ) < ( 𝑦 ‘ 1 ) ∨ ( ( 𝑥 ‘ 1 ) = ( 𝑦 ‘ 1 ) ∧ ( 𝑥 ‘ 2 ) < ( 𝑦 ‘ 2 ) ) ) ) }
2 rrx2plord2.r 𝑅 = ( ℝ ↑m { 1 , 2 } )
3 ltso < Or ℝ
4 eqid { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( ℝ × ℝ ) ∧ 𝑦 ∈ ( ℝ × ℝ ) ) ∧ ( ( 1st𝑥 ) < ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) < ( 2nd𝑦 ) ) ) ) } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( ℝ × ℝ ) ∧ 𝑦 ∈ ( ℝ × ℝ ) ) ∧ ( ( 1st𝑥 ) < ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) < ( 2nd𝑦 ) ) ) ) }
5 4 soxp ( ( < Or ℝ ∧ < Or ℝ ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( ℝ × ℝ ) ∧ 𝑦 ∈ ( ℝ × ℝ ) ) ∧ ( ( 1st𝑥 ) < ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) < ( 2nd𝑦 ) ) ) ) } Or ( ℝ × ℝ ) )
6 3 3 5 mp2an { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( ℝ × ℝ ) ∧ 𝑦 ∈ ( ℝ × ℝ ) ) ∧ ( ( 1st𝑥 ) < ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) < ( 2nd𝑦 ) ) ) ) } Or ( ℝ × ℝ )
7 eqid ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } )
8 1 2 7 4 rrx2plordisom ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } ) Isom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( ℝ × ℝ ) ∧ 𝑦 ∈ ( ℝ × ℝ ) ) ∧ ( ( 1st𝑥 ) < ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) < ( 2nd𝑦 ) ) ) ) } , 𝑂 ( ( ℝ × ℝ ) , 𝑅 )
9 isoso ( ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { ⟨ 1 , 𝑥 ⟩ , ⟨ 2 , 𝑦 ⟩ } ) Isom { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( ℝ × ℝ ) ∧ 𝑦 ∈ ( ℝ × ℝ ) ) ∧ ( ( 1st𝑥 ) < ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) < ( 2nd𝑦 ) ) ) ) } , 𝑂 ( ( ℝ × ℝ ) , 𝑅 ) → ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( ℝ × ℝ ) ∧ 𝑦 ∈ ( ℝ × ℝ ) ) ∧ ( ( 1st𝑥 ) < ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) < ( 2nd𝑦 ) ) ) ) } Or ( ℝ × ℝ ) ↔ 𝑂 Or 𝑅 ) )
10 8 9 ax-mp ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥 ∈ ( ℝ × ℝ ) ∧ 𝑦 ∈ ( ℝ × ℝ ) ) ∧ ( ( 1st𝑥 ) < ( 1st𝑦 ) ∨ ( ( 1st𝑥 ) = ( 1st𝑦 ) ∧ ( 2nd𝑥 ) < ( 2nd𝑦 ) ) ) ) } Or ( ℝ × ℝ ) ↔ 𝑂 Or 𝑅 )
11 6 10 mpbi 𝑂 Or 𝑅