| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl2eudisval0.e | ⊢ 𝐸  =  ( 𝔼hil ‘ 2 ) | 
						
							| 2 |  | ehl2eudisval0.x | ⊢ 𝑋  =  ( ℝ  ↑m  { 1 ,  2 } ) | 
						
							| 3 |  | ehl2eudisval0.d | ⊢ 𝐷  =  ( dist ‘ 𝐸 ) | 
						
							| 4 |  | ehl2eudisval0.0 | ⊢  0   =  ( { 1 ,  2 }  ×  { 0 } ) | 
						
							| 5 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 6 | 4 2 | rrx0el | ⊢ ( { 1 ,  2 }  ∈  V  →   0   ∈  𝑋 ) | 
						
							| 7 | 5 6 | mp1i | ⊢ ( 𝐹  ∈  𝑋  →   0   ∈  𝑋 ) | 
						
							| 8 | 1 2 3 | ehl2eudisval | ⊢ ( ( 𝐹  ∈  𝑋  ∧   0   ∈  𝑋 )  →  ( 𝐹 𝐷  0  )  =  ( √ ‘ ( ( ( ( 𝐹 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 9 | 7 8 | mpdan | ⊢ ( 𝐹  ∈  𝑋  →  ( 𝐹 𝐷  0  )  =  ( √ ‘ ( ( ( ( 𝐹 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 10 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 11 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 12 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 13 |  | xpprsng | ⊢ ( ( 1  ∈  V  ∧  2  ∈  V  ∧  0  ∈  V )  →  ( { 1 ,  2 }  ×  { 0 } )  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ) | 
						
							| 14 | 10 11 12 13 | mp3an | ⊢ ( { 1 ,  2 }  ×  { 0 } )  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } | 
						
							| 15 | 4 14 | eqtri | ⊢  0   =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } | 
						
							| 16 | 15 | fveq1i | ⊢ (  0  ‘ 1 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 1 ) | 
						
							| 17 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 18 | 10 12 | fvpr1 | ⊢ ( 1  ≠  2  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 1 )  =  0 ) | 
						
							| 19 | 17 18 | ax-mp | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 1 )  =  0 | 
						
							| 20 | 16 19 | eqtri | ⊢ (  0  ‘ 1 )  =  0 | 
						
							| 21 | 20 | a1i | ⊢ ( 𝐹  ∈  𝑋  →  (  0  ‘ 1 )  =  0 ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝐹  ∈  𝑋  →  ( ( 𝐹 ‘ 1 )  −  (  0  ‘ 1 ) )  =  ( ( 𝐹 ‘ 1 )  −  0 ) ) | 
						
							| 23 |  | eqid | ⊢ { 1 ,  2 }  =  { 1 ,  2 } | 
						
							| 24 | 23 2 | rrx2pxel | ⊢ ( 𝐹  ∈  𝑋  →  ( 𝐹 ‘ 1 )  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( 𝐹  ∈  𝑋  →  ( 𝐹 ‘ 1 )  ∈  ℂ ) | 
						
							| 26 | 25 | subid1d | ⊢ ( 𝐹  ∈  𝑋  →  ( ( 𝐹 ‘ 1 )  −  0 )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 27 | 22 26 | eqtrd | ⊢ ( 𝐹  ∈  𝑋  →  ( ( 𝐹 ‘ 1 )  −  (  0  ‘ 1 ) )  =  ( 𝐹 ‘ 1 ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝐹  ∈  𝑋  →  ( ( ( 𝐹 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  =  ( ( 𝐹 ‘ 1 ) ↑ 2 ) ) | 
						
							| 29 | 15 | fveq1i | ⊢ (  0  ‘ 2 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 2 ) | 
						
							| 30 | 11 12 | fvpr2 | ⊢ ( 1  ≠  2  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 2 )  =  0 ) | 
						
							| 31 | 17 30 | mp1i | ⊢ ( 𝐹  ∈  𝑋  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 2 )  =  0 ) | 
						
							| 32 | 29 31 | eqtrid | ⊢ ( 𝐹  ∈  𝑋  →  (  0  ‘ 2 )  =  0 ) | 
						
							| 33 | 32 | oveq2d | ⊢ ( 𝐹  ∈  𝑋  →  ( ( 𝐹 ‘ 2 )  −  (  0  ‘ 2 ) )  =  ( ( 𝐹 ‘ 2 )  −  0 ) ) | 
						
							| 34 | 23 2 | rrx2pyel | ⊢ ( 𝐹  ∈  𝑋  →  ( 𝐹 ‘ 2 )  ∈  ℝ ) | 
						
							| 35 | 34 | recnd | ⊢ ( 𝐹  ∈  𝑋  →  ( 𝐹 ‘ 2 )  ∈  ℂ ) | 
						
							| 36 | 35 | subid1d | ⊢ ( 𝐹  ∈  𝑋  →  ( ( 𝐹 ‘ 2 )  −  0 )  =  ( 𝐹 ‘ 2 ) ) | 
						
							| 37 | 33 36 | eqtrd | ⊢ ( 𝐹  ∈  𝑋  →  ( ( 𝐹 ‘ 2 )  −  (  0  ‘ 2 ) )  =  ( 𝐹 ‘ 2 ) ) | 
						
							| 38 | 37 | oveq1d | ⊢ ( 𝐹  ∈  𝑋  →  ( ( ( 𝐹 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 )  =  ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) | 
						
							| 39 | 28 38 | oveq12d | ⊢ ( 𝐹  ∈  𝑋  →  ( ( ( ( 𝐹 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( ( ( 𝐹 ‘ 1 ) ↑ 2 )  +  ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( 𝐹  ∈  𝑋  →  ( √ ‘ ( ( ( ( 𝐹 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝐹 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) ) )  =  ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 )  +  ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) | 
						
							| 41 | 9 40 | eqtrd | ⊢ ( 𝐹  ∈  𝑋  →  ( 𝐹 𝐷  0  )  =  ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 )  +  ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |