| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ehl2eudisval0.e |
⊢ 𝐸 = ( 𝔼hil ‘ 2 ) |
| 2 |
|
ehl2eudisval0.x |
⊢ 𝑋 = ( ℝ ↑m { 1 , 2 } ) |
| 3 |
|
ehl2eudisval0.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
| 4 |
|
ehl2eudisval0.0 |
⊢ 0 = ( { 1 , 2 } × { 0 } ) |
| 5 |
1 2 3 4
|
ehl2eudisval0 |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( 𝐹 𝐷 0 ) = ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
| 7 |
6
|
breq1d |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝐹 𝐷 0 ) < 𝑅 ↔ ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) ) |
| 8 |
|
eqid |
⊢ { 1 , 2 } = { 1 , 2 } |
| 9 |
8 2
|
rrx2pxel |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 ‘ 1 ) ∈ ℝ ) |
| 10 |
8 2
|
rrx2pyel |
⊢ ( 𝐹 ∈ 𝑋 → ( 𝐹 ‘ 2 ) ∈ ℝ ) |
| 11 |
|
eqid |
⊢ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) = ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) |
| 12 |
11
|
resum2sqcl |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ( 𝐹 ‘ 2 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ) |
| 13 |
9 10 12
|
syl2anc |
⊢ ( 𝐹 ∈ 𝑋 → ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ) |
| 14 |
|
resqcl |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ℝ → ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∈ ℝ ) |
| 15 |
|
resqcl |
⊢ ( ( 𝐹 ‘ 2 ) ∈ ℝ → ( ( 𝐹 ‘ 2 ) ↑ 2 ) ∈ ℝ ) |
| 16 |
14 15
|
anim12i |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ( 𝐹 ‘ 2 ) ∈ ℝ ) → ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ∈ ℝ ) ) |
| 17 |
|
sqge0 |
⊢ ( ( 𝐹 ‘ 1 ) ∈ ℝ → 0 ≤ ( ( 𝐹 ‘ 1 ) ↑ 2 ) ) |
| 18 |
|
sqge0 |
⊢ ( ( 𝐹 ‘ 2 ) ∈ ℝ → 0 ≤ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) |
| 19 |
17 18
|
anim12i |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ( 𝐹 ‘ 2 ) ∈ ℝ ) → ( 0 ≤ ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∧ 0 ≤ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
| 20 |
|
addge0 |
⊢ ( ( ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∈ ℝ ∧ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝐹 ‘ 1 ) ↑ 2 ) ∧ 0 ≤ ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) → 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
| 21 |
16 19 20
|
syl2anc |
⊢ ( ( ( 𝐹 ‘ 1 ) ∈ ℝ ∧ ( 𝐹 ‘ 2 ) ∈ ℝ ) → 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
| 22 |
9 10 21
|
syl2anc |
⊢ ( 𝐹 ∈ 𝑋 → 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
| 23 |
13 22
|
resqrtcld |
⊢ ( 𝐹 ∈ 𝑋 → ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ∈ ℝ ) |
| 24 |
13 22
|
sqrtge0d |
⊢ ( 𝐹 ∈ 𝑋 → 0 ≤ ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
| 25 |
23 24
|
jca |
⊢ ( 𝐹 ∈ 𝑋 → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) ) |
| 26 |
|
rprege0 |
⊢ ( 𝑅 ∈ ℝ+ → ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) |
| 27 |
|
lt2sq |
⊢ ( ( ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ∈ ℝ ∧ 0 ≤ ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ↔ ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) ) |
| 28 |
25 26 27
|
syl2an |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ↔ ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ) ) |
| 29 |
13 22
|
jca |
⊢ ( 𝐹 ∈ 𝑋 → ( ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ) |
| 31 |
|
resqrtth |
⊢ ( ( ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ∧ 0 ≤ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) = ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) |
| 33 |
32
|
breq1d |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( ( √ ‘ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) ) ↑ 2 ) < ( 𝑅 ↑ 2 ) ↔ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) ) |
| 34 |
7 28 33
|
3bitrd |
⊢ ( ( 𝐹 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝐹 𝐷 0 ) < 𝑅 ↔ ( ( ( 𝐹 ‘ 1 ) ↑ 2 ) + ( ( 𝐹 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) ) |