| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl2eudisval0.e |  |-  E = ( EEhil ` 2 ) | 
						
							| 2 |  | ehl2eudisval0.x |  |-  X = ( RR ^m { 1 , 2 } ) | 
						
							| 3 |  | ehl2eudisval0.d |  |-  D = ( dist ` E ) | 
						
							| 4 |  | ehl2eudisval0.0 |  |-  .0. = ( { 1 , 2 } X. { 0 } ) | 
						
							| 5 | 1 2 3 4 | ehl2eudisval0 |  |-  ( F e. X -> ( F D .0. ) = ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) | 
						
							| 6 | 5 | adantr |  |-  ( ( F e. X /\ R e. RR+ ) -> ( F D .0. ) = ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) | 
						
							| 7 | 6 | breq1d |  |-  ( ( F e. X /\ R e. RR+ ) -> ( ( F D .0. ) < R <-> ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) < R ) ) | 
						
							| 8 |  | eqid |  |-  { 1 , 2 } = { 1 , 2 } | 
						
							| 9 | 8 2 | rrx2pxel |  |-  ( F e. X -> ( F ` 1 ) e. RR ) | 
						
							| 10 | 8 2 | rrx2pyel |  |-  ( F e. X -> ( F ` 2 ) e. RR ) | 
						
							| 11 |  | eqid |  |-  ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) = ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) | 
						
							| 12 | 11 | resum2sqcl |  |-  ( ( ( F ` 1 ) e. RR /\ ( F ` 2 ) e. RR ) -> ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) e. RR ) | 
						
							| 13 | 9 10 12 | syl2anc |  |-  ( F e. X -> ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) e. RR ) | 
						
							| 14 |  | resqcl |  |-  ( ( F ` 1 ) e. RR -> ( ( F ` 1 ) ^ 2 ) e. RR ) | 
						
							| 15 |  | resqcl |  |-  ( ( F ` 2 ) e. RR -> ( ( F ` 2 ) ^ 2 ) e. RR ) | 
						
							| 16 | 14 15 | anim12i |  |-  ( ( ( F ` 1 ) e. RR /\ ( F ` 2 ) e. RR ) -> ( ( ( F ` 1 ) ^ 2 ) e. RR /\ ( ( F ` 2 ) ^ 2 ) e. RR ) ) | 
						
							| 17 |  | sqge0 |  |-  ( ( F ` 1 ) e. RR -> 0 <_ ( ( F ` 1 ) ^ 2 ) ) | 
						
							| 18 |  | sqge0 |  |-  ( ( F ` 2 ) e. RR -> 0 <_ ( ( F ` 2 ) ^ 2 ) ) | 
						
							| 19 | 17 18 | anim12i |  |-  ( ( ( F ` 1 ) e. RR /\ ( F ` 2 ) e. RR ) -> ( 0 <_ ( ( F ` 1 ) ^ 2 ) /\ 0 <_ ( ( F ` 2 ) ^ 2 ) ) ) | 
						
							| 20 |  | addge0 |  |-  ( ( ( ( ( F ` 1 ) ^ 2 ) e. RR /\ ( ( F ` 2 ) ^ 2 ) e. RR ) /\ ( 0 <_ ( ( F ` 1 ) ^ 2 ) /\ 0 <_ ( ( F ` 2 ) ^ 2 ) ) ) -> 0 <_ ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) | 
						
							| 21 | 16 19 20 | syl2anc |  |-  ( ( ( F ` 1 ) e. RR /\ ( F ` 2 ) e. RR ) -> 0 <_ ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) | 
						
							| 22 | 9 10 21 | syl2anc |  |-  ( F e. X -> 0 <_ ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) | 
						
							| 23 | 13 22 | resqrtcld |  |-  ( F e. X -> ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) e. RR ) | 
						
							| 24 | 13 22 | sqrtge0d |  |-  ( F e. X -> 0 <_ ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) | 
						
							| 25 | 23 24 | jca |  |-  ( F e. X -> ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) e. RR /\ 0 <_ ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) ) | 
						
							| 26 |  | rprege0 |  |-  ( R e. RR+ -> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 27 |  | lt2sq |  |-  ( ( ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) e. RR /\ 0 <_ ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) /\ ( R e. RR /\ 0 <_ R ) ) -> ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) < R <-> ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ^ 2 ) < ( R ^ 2 ) ) ) | 
						
							| 28 | 25 26 27 | syl2an |  |-  ( ( F e. X /\ R e. RR+ ) -> ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) < R <-> ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ^ 2 ) < ( R ^ 2 ) ) ) | 
						
							| 29 | 13 22 | jca |  |-  ( F e. X -> ( ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( F e. X /\ R e. RR+ ) -> ( ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) | 
						
							| 31 |  | resqrtth |  |-  ( ( ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) -> ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ^ 2 ) = ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( F e. X /\ R e. RR+ ) -> ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ^ 2 ) = ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) | 
						
							| 33 | 32 | breq1d |  |-  ( ( F e. X /\ R e. RR+ ) -> ( ( ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ^ 2 ) < ( R ^ 2 ) <-> ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) ) | 
						
							| 34 | 7 28 33 | 3bitrd |  |-  ( ( F e. X /\ R e. RR+ ) -> ( ( F D .0. ) < R <-> ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) < ( R ^ 2 ) ) ) |