| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ehl2eudisval0.e |  |-  E = ( EEhil ` 2 ) | 
						
							| 2 |  | ehl2eudisval0.x |  |-  X = ( RR ^m { 1 , 2 } ) | 
						
							| 3 |  | ehl2eudisval0.d |  |-  D = ( dist ` E ) | 
						
							| 4 |  | ehl2eudisval0.0 |  |-  .0. = ( { 1 , 2 } X. { 0 } ) | 
						
							| 5 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 6 | 4 2 | rrx0el |  |-  ( { 1 , 2 } e. _V -> .0. e. X ) | 
						
							| 7 | 5 6 | mp1i |  |-  ( F e. X -> .0. e. X ) | 
						
							| 8 | 1 2 3 | ehl2eudisval |  |-  ( ( F e. X /\ .0. e. X ) -> ( F D .0. ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 9 | 7 8 | mpdan |  |-  ( F e. X -> ( F D .0. ) = ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 10 |  | 1ex |  |-  1 e. _V | 
						
							| 11 |  | 2ex |  |-  2 e. _V | 
						
							| 12 |  | c0ex |  |-  0 e. _V | 
						
							| 13 |  | xpprsng |  |-  ( ( 1 e. _V /\ 2 e. _V /\ 0 e. _V ) -> ( { 1 , 2 } X. { 0 } ) = { <. 1 , 0 >. , <. 2 , 0 >. } ) | 
						
							| 14 | 10 11 12 13 | mp3an |  |-  ( { 1 , 2 } X. { 0 } ) = { <. 1 , 0 >. , <. 2 , 0 >. } | 
						
							| 15 | 4 14 | eqtri |  |-  .0. = { <. 1 , 0 >. , <. 2 , 0 >. } | 
						
							| 16 | 15 | fveq1i |  |-  ( .0. ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) | 
						
							| 17 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 18 | 10 12 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 | 
						
							| 20 | 16 19 | eqtri |  |-  ( .0. ` 1 ) = 0 | 
						
							| 21 | 20 | a1i |  |-  ( F e. X -> ( .0. ` 1 ) = 0 ) | 
						
							| 22 | 21 | oveq2d |  |-  ( F e. X -> ( ( F ` 1 ) - ( .0. ` 1 ) ) = ( ( F ` 1 ) - 0 ) ) | 
						
							| 23 |  | eqid |  |-  { 1 , 2 } = { 1 , 2 } | 
						
							| 24 | 23 2 | rrx2pxel |  |-  ( F e. X -> ( F ` 1 ) e. RR ) | 
						
							| 25 | 24 | recnd |  |-  ( F e. X -> ( F ` 1 ) e. CC ) | 
						
							| 26 | 25 | subid1d |  |-  ( F e. X -> ( ( F ` 1 ) - 0 ) = ( F ` 1 ) ) | 
						
							| 27 | 22 26 | eqtrd |  |-  ( F e. X -> ( ( F ` 1 ) - ( .0. ` 1 ) ) = ( F ` 1 ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( F e. X -> ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) = ( ( F ` 1 ) ^ 2 ) ) | 
						
							| 29 | 15 | fveq1i |  |-  ( .0. ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) | 
						
							| 30 | 11 12 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) | 
						
							| 31 | 17 30 | mp1i |  |-  ( F e. X -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) | 
						
							| 32 | 29 31 | eqtrid |  |-  ( F e. X -> ( .0. ` 2 ) = 0 ) | 
						
							| 33 | 32 | oveq2d |  |-  ( F e. X -> ( ( F ` 2 ) - ( .0. ` 2 ) ) = ( ( F ` 2 ) - 0 ) ) | 
						
							| 34 | 23 2 | rrx2pyel |  |-  ( F e. X -> ( F ` 2 ) e. RR ) | 
						
							| 35 | 34 | recnd |  |-  ( F e. X -> ( F ` 2 ) e. CC ) | 
						
							| 36 | 35 | subid1d |  |-  ( F e. X -> ( ( F ` 2 ) - 0 ) = ( F ` 2 ) ) | 
						
							| 37 | 33 36 | eqtrd |  |-  ( F e. X -> ( ( F ` 2 ) - ( .0. ` 2 ) ) = ( F ` 2 ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( F e. X -> ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) = ( ( F ` 2 ) ^ 2 ) ) | 
						
							| 39 | 28 38 | oveq12d |  |-  ( F e. X -> ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( F e. X -> ( sqrt ` ( ( ( ( F ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( F ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) | 
						
							| 41 | 9 40 | eqtrd |  |-  ( F e. X -> ( F D .0. ) = ( sqrt ` ( ( ( F ` 1 ) ^ 2 ) + ( ( F ` 2 ) ^ 2 ) ) ) ) |