Metamath Proof Explorer


Theorem ehl2eudisval0

Description: The Euclidean distance of a point to the origin in a real Euclidean space of dimension 2. (Contributed by AV, 26-Feb-2023)

Ref Expression
Hypotheses ehl2eudisval0.e E=𝔼hil2
ehl2eudisval0.x X=12
ehl2eudisval0.d D=distE
ehl2eudisval0.0 0˙=12×0
Assertion ehl2eudisval0 FXFD0˙=F12+F22

Proof

Step Hyp Ref Expression
1 ehl2eudisval0.e E=𝔼hil2
2 ehl2eudisval0.x X=12
3 ehl2eudisval0.d D=distE
4 ehl2eudisval0.0 0˙=12×0
5 prex 12V
6 4 2 rrx0el 12V0˙X
7 5 6 mp1i FX0˙X
8 1 2 3 ehl2eudisval FX0˙XFD0˙=F10˙12+F20˙22
9 7 8 mpdan FXFD0˙=F10˙12+F20˙22
10 1ex 1V
11 2ex 2V
12 c0ex 0V
13 xpprsng 1V2V0V12×0=1020
14 10 11 12 13 mp3an 12×0=1020
15 4 14 eqtri 0˙=1020
16 15 fveq1i 0˙1=10201
17 1ne2 12
18 10 12 fvpr1 1210201=0
19 17 18 ax-mp 10201=0
20 16 19 eqtri 0˙1=0
21 20 a1i FX0˙1=0
22 21 oveq2d FXF10˙1=F10
23 eqid 12=12
24 23 2 rrx2pxel FXF1
25 24 recnd FXF1
26 25 subid1d FXF10=F1
27 22 26 eqtrd FXF10˙1=F1
28 27 oveq1d FXF10˙12=F12
29 15 fveq1i 0˙2=10202
30 11 12 fvpr2 1210202=0
31 17 30 mp1i FX10202=0
32 29 31 eqtrid FX0˙2=0
33 32 oveq2d FXF20˙2=F20
34 23 2 rrx2pyel FXF2
35 34 recnd FXF2
36 35 subid1d FXF20=F2
37 33 36 eqtrd FXF20˙2=F2
38 37 oveq1d FXF20˙22=F22
39 28 38 oveq12d FXF10˙12+F20˙22=F12+F22
40 39 fveq2d FXF10˙12+F20˙22=F12+F22
41 9 40 eqtrd FXFD0˙=F12+F22