Metamath Proof Explorer


Theorem rrx2plordso

Description: The lexicographical ordering for points in the two dimensional Euclidean plane is a strict total ordering. (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses rrx2plord.o O=xy|xRyRx1<y1x1=y1x2<y2
rrx2plord2.r R=12
Assertion rrx2plordso OOrR

Proof

Step Hyp Ref Expression
1 rrx2plord.o O=xy|xRyRx1<y1x1=y1x2<y2
2 rrx2plord2.r R=12
3 ltso <Or
4 eqid xy|x2y21stx<1sty1stx=1sty2ndx<2ndy=xy|x2y21stx<1sty1stx=1sty2ndx<2ndy
5 4 soxp <Or<Orxy|x2y21stx<1sty1stx=1sty2ndx<2ndyOr2
6 3 3 5 mp2an xy|x2y21stx<1sty1stx=1sty2ndx<2ndyOr2
7 eqid x,y1x2y=x,y1x2y
8 1 2 7 4 rrx2plordisom x,y1x2yIsomxy|x2y21stx<1sty1stx=1sty2ndx<2ndy,O2R
9 isoso x,y1x2yIsomxy|x2y21stx<1sty1stx=1sty2ndx<2ndy,O2Rxy|x2y21stx<1sty1stx=1sty2ndx<2ndyOr2OOrR
10 8 9 ax-mp xy|x2y21stx<1sty1stx=1sty2ndx<2ndyOr2OOrR
11 6 10 mpbi OOrR