Metamath Proof Explorer


Theorem rrx2plordisom

Description: The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses rrx2plord.o O = x y | x R y R x 1 < y 1 x 1 = y 1 x 2 < y 2
rrx2plord2.r R = 1 2
rrx2plordisom.f F = x , y 1 x 2 y
rrx2plordisom.t T = x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y
Assertion rrx2plordisom F Isom T , O 2 R

Proof

Step Hyp Ref Expression
1 rrx2plord.o O = x y | x R y R x 1 < y 1 x 1 = y 1 x 2 < y 2
2 rrx2plord2.r R = 1 2
3 rrx2plordisom.f F = x , y 1 x 2 y
4 rrx2plordisom.t T = x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y
5 eqid x , y 1 x 2 y = x , y 1 x 2 y
6 2 5 rrx2xpref1o x , y 1 x 2 y : 2 1-1 onto R
7 elxpi a 2 c d a = c d c d
8 elxpi b 2 e f b = e f e f
9 df-br a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b a b x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y
10 opelxpi c d c d 2
11 10 adantl a = c d c d c d 2
12 eleq1 a = c d a 2 c d 2
13 12 adantr a = c d c d a 2 c d 2
14 11 13 mpbird a = c d c d a 2
15 opelxpi e f e f 2
16 15 adantl b = e f e f e f 2
17 eleq1 b = e f b 2 e f 2
18 17 adantr b = e f e f b 2 e f 2
19 16 18 mpbird b = e f e f b 2
20 fveq2 x = a 1 st x = 1 st a
21 fveq2 y = b 1 st y = 1 st b
22 20 21 breqan12d x = a y = b 1 st x < 1 st y 1 st a < 1 st b
23 20 21 eqeqan12d x = a y = b 1 st x = 1 st y 1 st a = 1 st b
24 fveq2 x = a 2 nd x = 2 nd a
25 fveq2 y = b 2 nd y = 2 nd b
26 24 25 breqan12d x = a y = b 2 nd x < 2 nd y 2 nd a < 2 nd b
27 23 26 anbi12d x = a y = b 1 st x = 1 st y 2 nd x < 2 nd y 1 st a = 1 st b 2 nd a < 2 nd b
28 22 27 orbi12d x = a y = b 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y 1 st a < 1 st b 1 st a = 1 st b 2 nd a < 2 nd b
29 28 opelopab2a a 2 b 2 a b x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y 1 st a < 1 st b 1 st a = 1 st b 2 nd a < 2 nd b
30 14 19 29 syl2an a = c d c d b = e f e f a b x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y 1 st a < 1 st b 1 st a = 1 st b 2 nd a < 2 nd b
31 9 30 syl5bb a = c d c d b = e f e f a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b 1 st a < 1 st b 1 st a = 1 st b 2 nd a < 2 nd b
32 1ne2 1 2
33 1ex 1 V
34 vex c V
35 33 34 fvpr1 1 2 1 c 2 d 1 = c
36 32 35 mp1i a = c d c d b = e f e f 1 c 2 d 1 = c
37 vex e V
38 33 37 fvpr1 1 2 1 e 2 f 1 = e
39 32 38 mp1i a = c d c d b = e f e f 1 e 2 f 1 = e
40 36 39 breq12d a = c d c d b = e f e f 1 c 2 d 1 < 1 e 2 f 1 c < e
41 36 39 eqeq12d a = c d c d b = e f e f 1 c 2 d 1 = 1 e 2 f 1 c = e
42 2ex 2 V
43 vex d V
44 42 43 fvpr2 1 2 1 c 2 d 2 = d
45 32 44 mp1i a = c d c d b = e f e f 1 c 2 d 2 = d
46 vex f V
47 42 46 fvpr2 1 2 1 e 2 f 2 = f
48 32 47 mp1i a = c d c d b = e f e f 1 e 2 f 2 = f
49 45 48 breq12d a = c d c d b = e f e f 1 c 2 d 2 < 1 e 2 f 2 d < f
50 41 49 anbi12d a = c d c d b = e f e f 1 c 2 d 1 = 1 e 2 f 1 1 c 2 d 2 < 1 e 2 f 2 c = e d < f
51 40 50 orbi12d a = c d c d b = e f e f 1 c 2 d 1 < 1 e 2 f 1 1 c 2 d 1 = 1 e 2 f 1 1 c 2 d 2 < 1 e 2 f 2 c < e c = e d < f
52 eqid 1 2 = 1 2
53 52 2 prelrrx2 c d 1 c 2 d R
54 53 adantl a = c d c d 1 c 2 d R
55 52 2 prelrrx2 e f 1 e 2 f R
56 55 adantl b = e f e f 1 e 2 f R
57 1 rrx2plord 1 c 2 d R 1 e 2 f R 1 c 2 d O 1 e 2 f 1 c 2 d 1 < 1 e 2 f 1 1 c 2 d 1 = 1 e 2 f 1 1 c 2 d 2 < 1 e 2 f 2
58 54 56 57 syl2an a = c d c d b = e f e f 1 c 2 d O 1 e 2 f 1 c 2 d 1 < 1 e 2 f 1 1 c 2 d 1 = 1 e 2 f 1 1 c 2 d 2 < 1 e 2 f 2
59 34 43 op1std a = c d 1 st a = c
60 59 adantr a = c d c d 1 st a = c
61 37 46 op1std b = e f 1 st b = e
62 61 adantr b = e f e f 1 st b = e
63 60 62 breqan12d a = c d c d b = e f e f 1 st a < 1 st b c < e
64 60 62 eqeqan12d a = c d c d b = e f e f 1 st a = 1 st b c = e
65 34 43 op2ndd a = c d 2 nd a = d
66 65 adantr a = c d c d 2 nd a = d
67 37 46 op2ndd b = e f 2 nd b = f
68 67 adantr b = e f e f 2 nd b = f
69 66 68 breqan12d a = c d c d b = e f e f 2 nd a < 2 nd b d < f
70 64 69 anbi12d a = c d c d b = e f e f 1 st a = 1 st b 2 nd a < 2 nd b c = e d < f
71 63 70 orbi12d a = c d c d b = e f e f 1 st a < 1 st b 1 st a = 1 st b 2 nd a < 2 nd b c < e c = e d < f
72 51 58 71 3bitr4rd a = c d c d b = e f e f 1 st a < 1 st b 1 st a = 1 st b 2 nd a < 2 nd b 1 c 2 d O 1 e 2 f
73 fveq2 a = c d x , y 1 x 2 y a = x , y 1 x 2 y c d
74 df-ov c x , y 1 x 2 y d = x , y 1 x 2 y c d
75 73 74 eqtr4di a = c d x , y 1 x 2 y a = c x , y 1 x 2 y d
76 eqidd c d x , y 1 x 2 y = x , y 1 x 2 y
77 opeq2 x = c 1 x = 1 c
78 77 adantr x = c y = d 1 x = 1 c
79 opeq2 y = d 2 y = 2 d
80 79 adantl x = c y = d 2 y = 2 d
81 78 80 preq12d x = c y = d 1 x 2 y = 1 c 2 d
82 81 adantl c d x = c y = d 1 x 2 y = 1 c 2 d
83 simpl c d c
84 simpr c d d
85 prex 1 c 2 d V
86 85 a1i c d 1 c 2 d V
87 76 82 83 84 86 ovmpod c d c x , y 1 x 2 y d = 1 c 2 d
88 75 87 sylan9eq a = c d c d x , y 1 x 2 y a = 1 c 2 d
89 88 eqcomd a = c d c d 1 c 2 d = x , y 1 x 2 y a
90 fveq2 b = e f x , y 1 x 2 y b = x , y 1 x 2 y e f
91 df-ov e x , y 1 x 2 y f = x , y 1 x 2 y e f
92 90 91 eqtr4di b = e f x , y 1 x 2 y b = e x , y 1 x 2 y f
93 eqidd e f x , y 1 x 2 y = x , y 1 x 2 y
94 opeq2 x = e 1 x = 1 e
95 94 adantr x = e y = f 1 x = 1 e
96 opeq2 y = f 2 y = 2 f
97 96 adantl x = e y = f 2 y = 2 f
98 95 97 preq12d x = e y = f 1 x 2 y = 1 e 2 f
99 98 adantl e f x = e y = f 1 x 2 y = 1 e 2 f
100 simpl e f e
101 simpr e f f
102 prex 1 e 2 f V
103 102 a1i e f 1 e 2 f V
104 93 99 100 101 103 ovmpod e f e x , y 1 x 2 y f = 1 e 2 f
105 92 104 sylan9eq b = e f e f x , y 1 x 2 y b = 1 e 2 f
106 105 eqcomd b = e f e f 1 e 2 f = x , y 1 x 2 y b
107 89 106 breqan12d a = c d c d b = e f e f 1 c 2 d O 1 e 2 f x , y 1 x 2 y a O x , y 1 x 2 y b
108 31 72 107 3bitrd a = c d c d b = e f e f a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
109 108 expcom b = e f e f a = c d c d a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
110 109 exlimivv e f b = e f e f a = c d c d a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
111 110 com12 a = c d c d e f b = e f e f a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
112 111 exlimivv c d a = c d c d e f b = e f e f a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
113 112 imp c d a = c d c d e f b = e f e f a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
114 7 8 113 syl2an a 2 b 2 a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
115 114 rgen2 a 2 b 2 a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
116 df-isom x , y 1 x 2 y Isom x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y , O 2 R x , y 1 x 2 y : 2 1-1 onto R a 2 b 2 a x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y b x , y 1 x 2 y a O x , y 1 x 2 y b
117 6 115 116 mpbir2an x , y 1 x 2 y Isom x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y , O 2 R
118 isoeq2 T = x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y x , y 1 x 2 y Isom T , O 2 R x , y 1 x 2 y Isom x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y , O 2 R
119 4 118 ax-mp x , y 1 x 2 y Isom T , O 2 R x , y 1 x 2 y Isom x y | x 2 y 2 1 st x < 1 st y 1 st x = 1 st y 2 nd x < 2 nd y , O 2 R
120 117 119 mpbir x , y 1 x 2 y Isom T , O 2 R
121 isoeq1 F = x , y 1 x 2 y F Isom T , O 2 R x , y 1 x 2 y Isom T , O 2 R
122 3 121 ax-mp F Isom T , O 2 R x , y 1 x 2 y Isom T , O 2 R
123 120 122 mpbir F Isom T , O 2 R