Metamath Proof Explorer


Theorem rrx2plordisom

Description: The set of points in the two dimensional Euclidean plane with the lexicographical ordering is isomorphic to the cartesian product of the real numbers with the lexicographical ordering implied by the ordering of the real numbers. (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses rrx2plord.o O=xy|xRyRx1<y1x1=y1x2<y2
rrx2plord2.r R=12
rrx2plordisom.f F=x,y1x2y
rrx2plordisom.t T=xy|x2y21stx<1sty1stx=1sty2ndx<2ndy
Assertion rrx2plordisom FIsomT,O2R

Proof

Step Hyp Ref Expression
1 rrx2plord.o O=xy|xRyRx1<y1x1=y1x2<y2
2 rrx2plord2.r R=12
3 rrx2plordisom.f F=x,y1x2y
4 rrx2plordisom.t T=xy|x2y21stx<1sty1stx=1sty2ndx<2ndy
5 eqid x,y1x2y=x,y1x2y
6 2 5 rrx2xpref1o x,y1x2y:21-1 ontoR
7 elxpi a2cda=cdcd
8 elxpi b2efb=efef
9 df-br axy|x2y21stx<1sty1stx=1sty2ndx<2ndybabxy|x2y21stx<1sty1stx=1sty2ndx<2ndy
10 opelxpi cdcd2
11 10 adantl a=cdcdcd2
12 eleq1 a=cda2cd2
13 12 adantr a=cdcda2cd2
14 11 13 mpbird a=cdcda2
15 opelxpi efef2
16 15 adantl b=efefef2
17 eleq1 b=efb2ef2
18 17 adantr b=efefb2ef2
19 16 18 mpbird b=efefb2
20 fveq2 x=a1stx=1sta
21 fveq2 y=b1sty=1stb
22 20 21 breqan12d x=ay=b1stx<1sty1sta<1stb
23 20 21 eqeqan12d x=ay=b1stx=1sty1sta=1stb
24 fveq2 x=a2ndx=2nda
25 fveq2 y=b2ndy=2ndb
26 24 25 breqan12d x=ay=b2ndx<2ndy2nda<2ndb
27 23 26 anbi12d x=ay=b1stx=1sty2ndx<2ndy1sta=1stb2nda<2ndb
28 22 27 orbi12d x=ay=b1stx<1sty1stx=1sty2ndx<2ndy1sta<1stb1sta=1stb2nda<2ndb
29 28 opelopab2a a2b2abxy|x2y21stx<1sty1stx=1sty2ndx<2ndy1sta<1stb1sta=1stb2nda<2ndb
30 14 19 29 syl2an a=cdcdb=efefabxy|x2y21stx<1sty1stx=1sty2ndx<2ndy1sta<1stb1sta=1stb2nda<2ndb
31 9 30 bitrid a=cdcdb=efefaxy|x2y21stx<1sty1stx=1sty2ndx<2ndyb1sta<1stb1sta=1stb2nda<2ndb
32 1ne2 12
33 1ex 1V
34 vex cV
35 33 34 fvpr1 121c2d1=c
36 32 35 mp1i a=cdcdb=efef1c2d1=c
37 vex eV
38 33 37 fvpr1 121e2f1=e
39 32 38 mp1i a=cdcdb=efef1e2f1=e
40 36 39 breq12d a=cdcdb=efef1c2d1<1e2f1c<e
41 36 39 eqeq12d a=cdcdb=efef1c2d1=1e2f1c=e
42 2ex 2V
43 vex dV
44 42 43 fvpr2 121c2d2=d
45 32 44 mp1i a=cdcdb=efef1c2d2=d
46 vex fV
47 42 46 fvpr2 121e2f2=f
48 32 47 mp1i a=cdcdb=efef1e2f2=f
49 45 48 breq12d a=cdcdb=efef1c2d2<1e2f2d<f
50 41 49 anbi12d a=cdcdb=efef1c2d1=1e2f11c2d2<1e2f2c=ed<f
51 40 50 orbi12d a=cdcdb=efef1c2d1<1e2f11c2d1=1e2f11c2d2<1e2f2c<ec=ed<f
52 eqid 12=12
53 52 2 prelrrx2 cd1c2dR
54 53 adantl a=cdcd1c2dR
55 52 2 prelrrx2 ef1e2fR
56 55 adantl b=efef1e2fR
57 1 rrx2plord 1c2dR1e2fR1c2dO1e2f1c2d1<1e2f11c2d1=1e2f11c2d2<1e2f2
58 54 56 57 syl2an a=cdcdb=efef1c2dO1e2f1c2d1<1e2f11c2d1=1e2f11c2d2<1e2f2
59 34 43 op1std a=cd1sta=c
60 59 adantr a=cdcd1sta=c
61 37 46 op1std b=ef1stb=e
62 61 adantr b=efef1stb=e
63 60 62 breqan12d a=cdcdb=efef1sta<1stbc<e
64 60 62 eqeqan12d a=cdcdb=efef1sta=1stbc=e
65 34 43 op2ndd a=cd2nda=d
66 65 adantr a=cdcd2nda=d
67 37 46 op2ndd b=ef2ndb=f
68 67 adantr b=efef2ndb=f
69 66 68 breqan12d a=cdcdb=efef2nda<2ndbd<f
70 64 69 anbi12d a=cdcdb=efef1sta=1stb2nda<2ndbc=ed<f
71 63 70 orbi12d a=cdcdb=efef1sta<1stb1sta=1stb2nda<2ndbc<ec=ed<f
72 51 58 71 3bitr4rd a=cdcdb=efef1sta<1stb1sta=1stb2nda<2ndb1c2dO1e2f
73 fveq2 a=cdx,y1x2ya=x,y1x2ycd
74 df-ov cx,y1x2yd=x,y1x2ycd
75 73 74 eqtr4di a=cdx,y1x2ya=cx,y1x2yd
76 eqidd cdx,y1x2y=x,y1x2y
77 opeq2 x=c1x=1c
78 77 adantr x=cy=d1x=1c
79 opeq2 y=d2y=2d
80 79 adantl x=cy=d2y=2d
81 78 80 preq12d x=cy=d1x2y=1c2d
82 81 adantl cdx=cy=d1x2y=1c2d
83 simpl cdc
84 simpr cdd
85 prex 1c2dV
86 85 a1i cd1c2dV
87 76 82 83 84 86 ovmpod cdcx,y1x2yd=1c2d
88 75 87 sylan9eq a=cdcdx,y1x2ya=1c2d
89 88 eqcomd a=cdcd1c2d=x,y1x2ya
90 fveq2 b=efx,y1x2yb=x,y1x2yef
91 df-ov ex,y1x2yf=x,y1x2yef
92 90 91 eqtr4di b=efx,y1x2yb=ex,y1x2yf
93 eqidd efx,y1x2y=x,y1x2y
94 opeq2 x=e1x=1e
95 94 adantr x=ey=f1x=1e
96 opeq2 y=f2y=2f
97 96 adantl x=ey=f2y=2f
98 95 97 preq12d x=ey=f1x2y=1e2f
99 98 adantl efx=ey=f1x2y=1e2f
100 simpl efe
101 simpr eff
102 prex 1e2fV
103 102 a1i ef1e2fV
104 93 99 100 101 103 ovmpod efex,y1x2yf=1e2f
105 92 104 sylan9eq b=efefx,y1x2yb=1e2f
106 105 eqcomd b=efef1e2f=x,y1x2yb
107 89 106 breqan12d a=cdcdb=efef1c2dO1e2fx,y1x2yaOx,y1x2yb
108 31 72 107 3bitrd a=cdcdb=efefaxy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
109 108 expcom b=efefa=cdcdaxy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
110 109 exlimivv efb=efefa=cdcdaxy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
111 110 com12 a=cdcdefb=efefaxy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
112 111 exlimivv cda=cdcdefb=efefaxy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
113 112 imp cda=cdcdefb=efefaxy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
114 7 8 113 syl2an a2b2axy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
115 114 rgen2 a2b2axy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
116 df-isom x,y1x2yIsomxy|x2y21stx<1sty1stx=1sty2ndx<2ndy,O2Rx,y1x2y:21-1 ontoRa2b2axy|x2y21stx<1sty1stx=1sty2ndx<2ndybx,y1x2yaOx,y1x2yb
117 6 115 116 mpbir2an x,y1x2yIsomxy|x2y21stx<1sty1stx=1sty2ndx<2ndy,O2R
118 isoeq2 T=xy|x2y21stx<1sty1stx=1sty2ndx<2ndyx,y1x2yIsomT,O2Rx,y1x2yIsomxy|x2y21stx<1sty1stx=1sty2ndx<2ndy,O2R
119 4 118 ax-mp x,y1x2yIsomT,O2Rx,y1x2yIsomxy|x2y21stx<1sty1stx=1sty2ndx<2ndy,O2R
120 117 119 mpbir x,y1x2yIsomT,O2R
121 isoeq1 F=x,y1x2yFIsomT,O2Rx,y1x2yIsomT,O2R
122 3 121 ax-mp FIsomT,O2Rx,y1x2yIsomT,O2R
123 120 122 mpbir FIsomT,O2R