Metamath Proof Explorer


Theorem prelrrx2

Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023)

Ref Expression
Hypotheses prelrrx2.i I=12
prelrrx2.b P=I
Assertion prelrrx2 AB1A2BP

Proof

Step Hyp Ref Expression
1 prelrrx2.i I=12
2 prelrrx2.b P=I
3 1ex 1V
4 2ex 2V
5 3 4 pm3.2i 1V2V
6 5 a1i AB1V2V
7 id ABAB
8 1ne2 12
9 8 a1i AB12
10 6 7 9 3jca AB1V2VAB12
11 fprg 1V2VAB121A2B:12AB
12 10 11 syl AB1A2B:12AB
13 prssi ABAB
14 12 13 fssd AB1A2B:12
15 reex V
16 prex 12V
17 15 16 pm3.2i V12V
18 elmapg V12V1A2B121A2B:12
19 17 18 ax-mp 1A2B121A2B:12
20 14 19 sylibr AB1A2B12
21 1 oveq2i I=12
22 2 21 eqtri P=12
23 22 eleq2i 1A2BP1A2B12
24 20 23 sylibr AB1A2BP