Metamath Proof Explorer


Theorem prelrrx2b

Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2, determined by its coordinates. (Contributed by AV, 7-May-2023)

Ref Expression
Hypotheses prelrrx2.i I=12
prelrrx2.b P=I
Assertion prelrrx2b ABXYZPZ1=AZ2=BZ1=XZ2=YZ1A2B1X2Y

Proof

Step Hyp Ref Expression
1 prelrrx2.i I=12
2 prelrrx2.b P=I
3 2 eleq2i ZPZI
4 1 oveq2i I=12
5 4 eleq2i ZIZ12
6 3 5 bitri ZPZ12
7 elmapi Z12Z:12
8 1ne2 12
9 1ex 1V
10 2ex 2V
11 9 10 fprb 12Z:12xyZ=1x2y
12 8 11 ax-mp Z:12xyZ=1x2y
13 fveq1 Z=1x2yZ1=1x2y1
14 vex xV
15 9 14 fvpr1 121x2y1=x
16 8 15 ax-mp 1x2y1=x
17 13 16 eqtrdi Z=1x2yZ1=x
18 17 eqeq1d Z=1x2yZ1=Ax=A
19 fveq1 Z=1x2yZ2=1x2y2
20 vex yV
21 10 20 fvpr2 121x2y2=y
22 8 21 ax-mp 1x2y2=y
23 19 22 eqtrdi Z=1x2yZ2=y
24 23 eqeq1d Z=1x2yZ2=By=B
25 18 24 anbi12d Z=1x2yZ1=AZ2=Bx=Ay=B
26 25 adantl ABXYxyZ=1x2yZ1=AZ2=Bx=Ay=B
27 opeq2 x=A1x=1A
28 27 adantr x=Ay=B1x=1A
29 opeq2 y=B2y=2B
30 29 adantl x=Ay=B2y=2B
31 28 30 preq12d x=Ay=B1x2y=1A2B
32 31 eqeq2d x=Ay=BZ=1x2yZ=1A2B
33 32 biimpcd Z=1x2yx=Ay=BZ=1A2B
34 33 adantl ABXYxyZ=1x2yx=Ay=BZ=1A2B
35 26 34 sylbid ABXYxyZ=1x2yZ1=AZ2=BZ=1A2B
36 35 ex ABXYxyZ=1x2yZ1=AZ2=BZ=1A2B
37 36 rexlimdvva ABXYxyZ=1x2yZ1=AZ2=BZ=1A2B
38 12 37 biimtrid ABXYZ:12Z1=AZ2=BZ=1A2B
39 7 38 syl5 ABXYZ12Z1=AZ2=BZ=1A2B
40 6 39 biimtrid ABXYZPZ1=AZ2=BZ=1A2B
41 40 imp ABXYZPZ1=AZ2=BZ=1A2B
42 17 eqeq1d Z=1x2yZ1=Xx=X
43 23 eqeq1d Z=1x2yZ2=Yy=Y
44 42 43 anbi12d Z=1x2yZ1=XZ2=Yx=Xy=Y
45 44 adantl ABXYxyZ=1x2yZ1=XZ2=Yx=Xy=Y
46 opeq2 x=X1x=1X
47 46 adantr x=Xy=Y1x=1X
48 opeq2 y=Y2y=2Y
49 48 adantl x=Xy=Y2y=2Y
50 47 49 preq12d x=Xy=Y1x2y=1X2Y
51 50 eqeq2d x=Xy=YZ=1x2yZ=1X2Y
52 51 biimpcd Z=1x2yx=Xy=YZ=1X2Y
53 52 adantl ABXYxyZ=1x2yx=Xy=YZ=1X2Y
54 45 53 sylbid ABXYxyZ=1x2yZ1=XZ2=YZ=1X2Y
55 54 ex ABXYxyZ=1x2yZ1=XZ2=YZ=1X2Y
56 55 rexlimdvva ABXYxyZ=1x2yZ1=XZ2=YZ=1X2Y
57 12 56 biimtrid ABXYZ:12Z1=XZ2=YZ=1X2Y
58 7 57 syl5 ABXYZ12Z1=XZ2=YZ=1X2Y
59 6 58 biimtrid ABXYZPZ1=XZ2=YZ=1X2Y
60 59 imp ABXYZPZ1=XZ2=YZ=1X2Y
61 41 60 orim12d ABXYZPZ1=AZ2=BZ1=XZ2=YZ=1A2BZ=1X2Y
62 61 imp ABXYZPZ1=AZ2=BZ1=XZ2=YZ=1A2BZ=1X2Y
63 elprg ZPZ1A2B1X2YZ=1A2BZ=1X2Y
64 63 ad2antlr ABXYZPZ1=AZ2=BZ1=XZ2=YZ1A2B1X2YZ=1A2BZ=1X2Y
65 62 64 mpbird ABXYZPZ1=AZ2=BZ1=XZ2=YZ1A2B1X2Y
66 65 expl ABXYZPZ1=AZ2=BZ1=XZ2=YZ1A2B1X2Y
67 elpri Z1A2B1X2YZ=1A2BZ=1X2Y
68 1 2 prelrrx2 AB1A2BP
69 68 ad2antrr ABXYZ=1A2B1A2BP
70 eleq1 Z=1A2BZP1A2BP
71 70 adantl ABXYZ=1A2BZP1A2BP
72 69 71 mpbird ABXYZ=1A2BZP
73 simpl ABA
74 8 a1i AB12
75 fvpr1g 1VA121A2B1=A
76 9 73 74 75 mp3an2i AB1A2B1=A
77 simpr ABB
78 fvpr2g 2VB121A2B2=B
79 10 77 74 78 mp3an2i AB1A2B2=B
80 76 79 jca AB1A2B1=A1A2B2=B
81 80 ad2antrr ABXYZ=1A2B1A2B1=A1A2B2=B
82 fveq1 Z=1A2BZ1=1A2B1
83 82 eqeq1d Z=1A2BZ1=A1A2B1=A
84 fveq1 Z=1A2BZ2=1A2B2
85 84 eqeq1d Z=1A2BZ2=B1A2B2=B
86 83 85 anbi12d Z=1A2BZ1=AZ2=B1A2B1=A1A2B2=B
87 86 adantl ABXYZ=1A2BZ1=AZ2=B1A2B1=A1A2B2=B
88 81 87 mpbird ABXYZ=1A2BZ1=AZ2=B
89 88 orcd ABXYZ=1A2BZ1=AZ2=BZ1=XZ2=Y
90 72 89 jca ABXYZ=1A2BZPZ1=AZ2=BZ1=XZ2=Y
91 90 ex ABXYZ=1A2BZPZ1=AZ2=BZ1=XZ2=Y
92 1 2 prelrrx2 XY1X2YP
93 92 ad2antlr ABXYZ=1X2Y1X2YP
94 eleq1 Z=1X2YZP1X2YP
95 94 adantl ABXYZ=1X2YZP1X2YP
96 93 95 mpbird ABXYZ=1X2YZP
97 simpl XYX
98 8 a1i XY12
99 fvpr1g 1VX121X2Y1=X
100 9 97 98 99 mp3an2i XY1X2Y1=X
101 simpr XYY
102 fvpr2g 2VY121X2Y2=Y
103 10 101 98 102 mp3an2i XY1X2Y2=Y
104 100 103 jca XY1X2Y1=X1X2Y2=Y
105 104 ad2antlr ABXYZ=1X2Y1X2Y1=X1X2Y2=Y
106 fveq1 Z=1X2YZ1=1X2Y1
107 106 eqeq1d Z=1X2YZ1=X1X2Y1=X
108 fveq1 Z=1X2YZ2=1X2Y2
109 108 eqeq1d Z=1X2YZ2=Y1X2Y2=Y
110 107 109 anbi12d Z=1X2YZ1=XZ2=Y1X2Y1=X1X2Y2=Y
111 110 adantl ABXYZ=1X2YZ1=XZ2=Y1X2Y1=X1X2Y2=Y
112 105 111 mpbird ABXYZ=1X2YZ1=XZ2=Y
113 112 olcd ABXYZ=1X2YZ1=AZ2=BZ1=XZ2=Y
114 96 113 jca ABXYZ=1X2YZPZ1=AZ2=BZ1=XZ2=Y
115 114 ex ABXYZ=1X2YZPZ1=AZ2=BZ1=XZ2=Y
116 91 115 jaod ABXYZ=1A2BZ=1X2YZPZ1=AZ2=BZ1=XZ2=Y
117 67 116 syl5 ABXYZ1A2B1X2YZPZ1=AZ2=BZ1=XZ2=Y
118 66 117 impbid ABXYZPZ1=AZ2=BZ1=XZ2=YZ1A2B1X2Y