Metamath Proof Explorer


Theorem prelrrx2b

Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2, determined by its coordinates. (Contributed by AV, 7-May-2023)

Ref Expression
Hypotheses prelrrx2.i I = 1 2
prelrrx2.b P = I
Assertion prelrrx2b A B X Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y Z 1 A 2 B 1 X 2 Y

Proof

Step Hyp Ref Expression
1 prelrrx2.i I = 1 2
2 prelrrx2.b P = I
3 2 eleq2i Z P Z I
4 1 oveq2i I = 1 2
5 4 eleq2i Z I Z 1 2
6 3 5 bitri Z P Z 1 2
7 elmapi Z 1 2 Z : 1 2
8 1ne2 1 2
9 1ex 1 V
10 2ex 2 V
11 9 10 fprb 1 2 Z : 1 2 x y Z = 1 x 2 y
12 8 11 ax-mp Z : 1 2 x y Z = 1 x 2 y
13 fveq1 Z = 1 x 2 y Z 1 = 1 x 2 y 1
14 vex x V
15 9 14 fvpr1 1 2 1 x 2 y 1 = x
16 8 15 ax-mp 1 x 2 y 1 = x
17 13 16 eqtrdi Z = 1 x 2 y Z 1 = x
18 17 eqeq1d Z = 1 x 2 y Z 1 = A x = A
19 fveq1 Z = 1 x 2 y Z 2 = 1 x 2 y 2
20 vex y V
21 10 20 fvpr2 1 2 1 x 2 y 2 = y
22 8 21 ax-mp 1 x 2 y 2 = y
23 19 22 eqtrdi Z = 1 x 2 y Z 2 = y
24 23 eqeq1d Z = 1 x 2 y Z 2 = B y = B
25 18 24 anbi12d Z = 1 x 2 y Z 1 = A Z 2 = B x = A y = B
26 25 adantl A B X Y x y Z = 1 x 2 y Z 1 = A Z 2 = B x = A y = B
27 opeq2 x = A 1 x = 1 A
28 27 adantr x = A y = B 1 x = 1 A
29 opeq2 y = B 2 y = 2 B
30 29 adantl x = A y = B 2 y = 2 B
31 28 30 preq12d x = A y = B 1 x 2 y = 1 A 2 B
32 31 eqeq2d x = A y = B Z = 1 x 2 y Z = 1 A 2 B
33 32 biimpcd Z = 1 x 2 y x = A y = B Z = 1 A 2 B
34 33 adantl A B X Y x y Z = 1 x 2 y x = A y = B Z = 1 A 2 B
35 26 34 sylbid A B X Y x y Z = 1 x 2 y Z 1 = A Z 2 = B Z = 1 A 2 B
36 35 ex A B X Y x y Z = 1 x 2 y Z 1 = A Z 2 = B Z = 1 A 2 B
37 36 rexlimdvva A B X Y x y Z = 1 x 2 y Z 1 = A Z 2 = B Z = 1 A 2 B
38 12 37 syl5bi A B X Y Z : 1 2 Z 1 = A Z 2 = B Z = 1 A 2 B
39 7 38 syl5 A B X Y Z 1 2 Z 1 = A Z 2 = B Z = 1 A 2 B
40 6 39 syl5bi A B X Y Z P Z 1 = A Z 2 = B Z = 1 A 2 B
41 40 imp A B X Y Z P Z 1 = A Z 2 = B Z = 1 A 2 B
42 17 eqeq1d Z = 1 x 2 y Z 1 = X x = X
43 23 eqeq1d Z = 1 x 2 y Z 2 = Y y = Y
44 42 43 anbi12d Z = 1 x 2 y Z 1 = X Z 2 = Y x = X y = Y
45 44 adantl A B X Y x y Z = 1 x 2 y Z 1 = X Z 2 = Y x = X y = Y
46 opeq2 x = X 1 x = 1 X
47 46 adantr x = X y = Y 1 x = 1 X
48 opeq2 y = Y 2 y = 2 Y
49 48 adantl x = X y = Y 2 y = 2 Y
50 47 49 preq12d x = X y = Y 1 x 2 y = 1 X 2 Y
51 50 eqeq2d x = X y = Y Z = 1 x 2 y Z = 1 X 2 Y
52 51 biimpcd Z = 1 x 2 y x = X y = Y Z = 1 X 2 Y
53 52 adantl A B X Y x y Z = 1 x 2 y x = X y = Y Z = 1 X 2 Y
54 45 53 sylbid A B X Y x y Z = 1 x 2 y Z 1 = X Z 2 = Y Z = 1 X 2 Y
55 54 ex A B X Y x y Z = 1 x 2 y Z 1 = X Z 2 = Y Z = 1 X 2 Y
56 55 rexlimdvva A B X Y x y Z = 1 x 2 y Z 1 = X Z 2 = Y Z = 1 X 2 Y
57 12 56 syl5bi A B X Y Z : 1 2 Z 1 = X Z 2 = Y Z = 1 X 2 Y
58 7 57 syl5 A B X Y Z 1 2 Z 1 = X Z 2 = Y Z = 1 X 2 Y
59 6 58 syl5bi A B X Y Z P Z 1 = X Z 2 = Y Z = 1 X 2 Y
60 59 imp A B X Y Z P Z 1 = X Z 2 = Y Z = 1 X 2 Y
61 41 60 orim12d A B X Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y Z = 1 A 2 B Z = 1 X 2 Y
62 61 imp A B X Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y Z = 1 A 2 B Z = 1 X 2 Y
63 elprg Z P Z 1 A 2 B 1 X 2 Y Z = 1 A 2 B Z = 1 X 2 Y
64 63 ad2antlr A B X Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y Z 1 A 2 B 1 X 2 Y Z = 1 A 2 B Z = 1 X 2 Y
65 62 64 mpbird A B X Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y Z 1 A 2 B 1 X 2 Y
66 65 expl A B X Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y Z 1 A 2 B 1 X 2 Y
67 elpri Z 1 A 2 B 1 X 2 Y Z = 1 A 2 B Z = 1 X 2 Y
68 1 2 prelrrx2 A B 1 A 2 B P
69 68 ad2antrr A B X Y Z = 1 A 2 B 1 A 2 B P
70 eleq1 Z = 1 A 2 B Z P 1 A 2 B P
71 70 adantl A B X Y Z = 1 A 2 B Z P 1 A 2 B P
72 69 71 mpbird A B X Y Z = 1 A 2 B Z P
73 simpl A B A
74 8 a1i A B 1 2
75 fvpr1g 1 V A 1 2 1 A 2 B 1 = A
76 9 73 74 75 mp3an2i A B 1 A 2 B 1 = A
77 simpr A B B
78 fvpr2g 2 V B 1 2 1 A 2 B 2 = B
79 10 77 74 78 mp3an2i A B 1 A 2 B 2 = B
80 76 79 jca A B 1 A 2 B 1 = A 1 A 2 B 2 = B
81 80 ad2antrr A B X Y Z = 1 A 2 B 1 A 2 B 1 = A 1 A 2 B 2 = B
82 fveq1 Z = 1 A 2 B Z 1 = 1 A 2 B 1
83 82 eqeq1d Z = 1 A 2 B Z 1 = A 1 A 2 B 1 = A
84 fveq1 Z = 1 A 2 B Z 2 = 1 A 2 B 2
85 84 eqeq1d Z = 1 A 2 B Z 2 = B 1 A 2 B 2 = B
86 83 85 anbi12d Z = 1 A 2 B Z 1 = A Z 2 = B 1 A 2 B 1 = A 1 A 2 B 2 = B
87 86 adantl A B X Y Z = 1 A 2 B Z 1 = A Z 2 = B 1 A 2 B 1 = A 1 A 2 B 2 = B
88 81 87 mpbird A B X Y Z = 1 A 2 B Z 1 = A Z 2 = B
89 88 orcd A B X Y Z = 1 A 2 B Z 1 = A Z 2 = B Z 1 = X Z 2 = Y
90 72 89 jca A B X Y Z = 1 A 2 B Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y
91 90 ex A B X Y Z = 1 A 2 B Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y
92 1 2 prelrrx2 X Y 1 X 2 Y P
93 92 ad2antlr A B X Y Z = 1 X 2 Y 1 X 2 Y P
94 eleq1 Z = 1 X 2 Y Z P 1 X 2 Y P
95 94 adantl A B X Y Z = 1 X 2 Y Z P 1 X 2 Y P
96 93 95 mpbird A B X Y Z = 1 X 2 Y Z P
97 simpl X Y X
98 8 a1i X Y 1 2
99 fvpr1g 1 V X 1 2 1 X 2 Y 1 = X
100 9 97 98 99 mp3an2i X Y 1 X 2 Y 1 = X
101 simpr X Y Y
102 fvpr2g 2 V Y 1 2 1 X 2 Y 2 = Y
103 10 101 98 102 mp3an2i X Y 1 X 2 Y 2 = Y
104 100 103 jca X Y 1 X 2 Y 1 = X 1 X 2 Y 2 = Y
105 104 ad2antlr A B X Y Z = 1 X 2 Y 1 X 2 Y 1 = X 1 X 2 Y 2 = Y
106 fveq1 Z = 1 X 2 Y Z 1 = 1 X 2 Y 1
107 106 eqeq1d Z = 1 X 2 Y Z 1 = X 1 X 2 Y 1 = X
108 fveq1 Z = 1 X 2 Y Z 2 = 1 X 2 Y 2
109 108 eqeq1d Z = 1 X 2 Y Z 2 = Y 1 X 2 Y 2 = Y
110 107 109 anbi12d Z = 1 X 2 Y Z 1 = X Z 2 = Y 1 X 2 Y 1 = X 1 X 2 Y 2 = Y
111 110 adantl A B X Y Z = 1 X 2 Y Z 1 = X Z 2 = Y 1 X 2 Y 1 = X 1 X 2 Y 2 = Y
112 105 111 mpbird A B X Y Z = 1 X 2 Y Z 1 = X Z 2 = Y
113 112 olcd A B X Y Z = 1 X 2 Y Z 1 = A Z 2 = B Z 1 = X Z 2 = Y
114 96 113 jca A B X Y Z = 1 X 2 Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y
115 114 ex A B X Y Z = 1 X 2 Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y
116 91 115 jaod A B X Y Z = 1 A 2 B Z = 1 X 2 Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y
117 67 116 syl5 A B X Y Z 1 A 2 B 1 X 2 Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y
118 66 117 impbid A B X Y Z P Z 1 = A Z 2 = B Z 1 = X Z 2 = Y Z 1 A 2 B 1 X 2 Y