Metamath Proof Explorer


Theorem rrx2pnecoorneor

Description: If two different points X and Y in a real Euclidean space of dimension 2 are different, then they are different at least at one coordinate. (Contributed by AV, 26-Feb-2023)

Ref Expression
Hypotheses rrx2pnecoorneor.i I=12
rrx2pnecoorneor.b P=I
Assertion rrx2pnecoorneor XPYPXYX1Y1X2Y2

Proof

Step Hyp Ref Expression
1 rrx2pnecoorneor.i I=12
2 rrx2pnecoorneor.b P=I
3 simpr XPYPX1=Y1X2=Y2X1=Y1X2=Y2
4 1 raleqi iIXi=Yii12Xi=Yi
5 1ex 1V
6 2ex 2V
7 fveq2 i=1Xi=X1
8 fveq2 i=1Yi=Y1
9 7 8 eqeq12d i=1Xi=YiX1=Y1
10 fveq2 i=2Xi=X2
11 fveq2 i=2Yi=Y2
12 10 11 eqeq12d i=2Xi=YiX2=Y2
13 5 6 9 12 ralpr i12Xi=YiX1=Y1X2=Y2
14 4 13 bitri iIXi=YiX1=Y1X2=Y2
15 3 14 sylibr XPYPX1=Y1X2=Y2iIXi=Yi
16 elmapfn XIXFnI
17 16 2 eleq2s XPXFnI
18 elmapfn YIYFnI
19 18 2 eleq2s YPYFnI
20 17 19 anim12i XPYPXFnIYFnI
21 20 adantr XPYPX1=Y1X2=Y2XFnIYFnI
22 eqfnfv XFnIYFnIX=YiIXi=Yi
23 21 22 syl XPYPX1=Y1X2=Y2X=YiIXi=Yi
24 15 23 mpbird XPYPX1=Y1X2=Y2X=Y
25 24 ex XPYPX1=Y1X2=Y2X=Y
26 25 necon3ad XPYPXY¬X1=Y1X2=Y2
27 26 3impia XPYPXY¬X1=Y1X2=Y2
28 neorian X1Y1X2Y2¬X1=Y1X2=Y2
29 27 28 sylibr XPYPXYX1Y1X2Y2