| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrx2pnecoorneor.i |
⊢ 𝐼 = { 1 , 2 } |
| 2 |
|
rrx2pnecoorneor.b |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
| 3 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) → ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) |
| 4 |
1
|
raleqi |
⊢ ( ∀ 𝑖 ∈ 𝐼 ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ { 1 , 2 } ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 5 |
|
1ex |
⊢ 1 ∈ V |
| 6 |
|
2ex |
⊢ 2 ∈ V |
| 7 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑋 ‘ 𝑖 ) = ( 𝑋 ‘ 1 ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑖 = 1 → ( 𝑌 ‘ 𝑖 ) = ( 𝑌 ‘ 1 ) ) |
| 9 |
7 8
|
eqeq12d |
⊢ ( 𝑖 = 1 → ( ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ↔ ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑖 = 2 → ( 𝑋 ‘ 𝑖 ) = ( 𝑋 ‘ 2 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑖 = 2 → ( 𝑌 ‘ 𝑖 ) = ( 𝑌 ‘ 2 ) ) |
| 12 |
10 11
|
eqeq12d |
⊢ ( 𝑖 = 2 → ( ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ↔ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) |
| 13 |
5 6 9 12
|
ralpr |
⊢ ( ∀ 𝑖 ∈ { 1 , 2 } ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ↔ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) |
| 14 |
4 13
|
bitri |
⊢ ( ∀ 𝑖 ∈ 𝐼 ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ↔ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) |
| 15 |
3 14
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) → ∀ 𝑖 ∈ 𝐼 ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) |
| 16 |
|
elmapfn |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → 𝑋 Fn 𝐼 ) |
| 17 |
16 2
|
eleq2s |
⊢ ( 𝑋 ∈ 𝑃 → 𝑋 Fn 𝐼 ) |
| 18 |
|
elmapfn |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝐼 ) → 𝑌 Fn 𝐼 ) |
| 19 |
18 2
|
eleq2s |
⊢ ( 𝑌 ∈ 𝑃 → 𝑌 Fn 𝐼 ) |
| 20 |
17 19
|
anim12i |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( 𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) → ( 𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼 ) ) |
| 22 |
|
eqfnfv |
⊢ ( ( 𝑋 Fn 𝐼 ∧ 𝑌 Fn 𝐼 ) → ( 𝑋 = 𝑌 ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) ) |
| 23 |
21 22
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) → ( 𝑋 = 𝑌 ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑋 ‘ 𝑖 ) = ( 𝑌 ‘ 𝑖 ) ) ) |
| 24 |
15 23
|
mpbird |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) ∧ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) → 𝑋 = 𝑌 ) |
| 25 |
24
|
ex |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) → 𝑋 = 𝑌 ) ) |
| 26 |
25
|
necon3ad |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( 𝑋 ≠ 𝑌 → ¬ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) ) |
| 27 |
26
|
3impia |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ¬ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) |
| 28 |
|
neorian |
⊢ ( ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ↔ ¬ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) = ( 𝑌 ‘ 2 ) ) ) |
| 29 |
27 28
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) |