Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2pnecoorneor.i |
⊢ 𝐼 = { 1 , 2 } |
2 |
|
rrx2pnecoorneor.b |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
3 |
|
rrx2pnedifcoorneor.a |
⊢ 𝐴 = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) |
4 |
|
rrx2pnedifcoorneor.b |
⊢ 𝐵 = ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) |
5 |
1 2
|
rrx2pnecoorneor |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) |
6 |
3
|
neeq1i |
⊢ ( 𝐴 ≠ 0 ↔ ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ) |
7 |
4
|
neeq1i |
⊢ ( 𝐵 ≠ 0 ↔ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ) |
8 |
6 7
|
orbi12i |
⊢ ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ∨ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ) ) |
9 |
1 2
|
rrx2pxel |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
10 |
9
|
recnd |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 1 ) ∈ ℂ ) |
11 |
1 2
|
rrx2pxel |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
12 |
11
|
recnd |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 1 ) ∈ ℂ ) |
13 |
|
subeq0 |
⊢ ( ( ( 𝑌 ‘ 1 ) ∈ ℂ ∧ ( 𝑋 ‘ 1 ) ∈ ℂ ) → ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = 0 ↔ ( 𝑌 ‘ 1 ) = ( 𝑋 ‘ 1 ) ) ) |
14 |
10 12 13
|
syl2anr |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = 0 ↔ ( 𝑌 ‘ 1 ) = ( 𝑋 ‘ 1 ) ) ) |
15 |
14
|
necon3bid |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ↔ ( 𝑌 ‘ 1 ) ≠ ( 𝑋 ‘ 1 ) ) ) |
16 |
1 2
|
rrx2pyel |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 2 ) ∈ ℂ ) |
18 |
1 2
|
rrx2pyel |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
19 |
18
|
recnd |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 2 ) ∈ ℂ ) |
20 |
|
subeq0 |
⊢ ( ( ( 𝑌 ‘ 2 ) ∈ ℂ ∧ ( 𝑋 ‘ 2 ) ∈ ℂ ) → ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = 0 ↔ ( 𝑌 ‘ 2 ) = ( 𝑋 ‘ 2 ) ) ) |
21 |
17 19 20
|
syl2anr |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = 0 ↔ ( 𝑌 ‘ 2 ) = ( 𝑋 ‘ 2 ) ) ) |
22 |
21
|
necon3bid |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ↔ ( 𝑌 ‘ 2 ) ≠ ( 𝑋 ‘ 2 ) ) ) |
23 |
15 22
|
orbi12d |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ∨ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ) ↔ ( ( 𝑌 ‘ 1 ) ≠ ( 𝑋 ‘ 1 ) ∨ ( 𝑌 ‘ 2 ) ≠ ( 𝑋 ‘ 2 ) ) ) ) |
24 |
|
necom |
⊢ ( ( 𝑌 ‘ 1 ) ≠ ( 𝑋 ‘ 1 ) ↔ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) |
25 |
|
necom |
⊢ ( ( 𝑌 ‘ 2 ) ≠ ( 𝑋 ‘ 2 ) ↔ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) |
26 |
24 25
|
orbi12i |
⊢ ( ( ( 𝑌 ‘ 1 ) ≠ ( 𝑋 ‘ 1 ) ∨ ( 𝑌 ‘ 2 ) ≠ ( 𝑋 ‘ 2 ) ) ↔ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) |
27 |
23 26
|
bitrdi |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ∨ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ) ↔ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) ) |
28 |
8 27
|
syl5bb |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) ) |
29 |
28
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) ) |
30 |
5 29
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ) |