| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2pnecoorneor.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | rrx2pnecoorneor.b | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 3 |  | rrx2pnedifcoorneor.a | ⊢ 𝐴  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) | 
						
							| 4 |  | rrx2pnedifcoorneor.b | ⊢ 𝐵  =  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) ) | 
						
							| 5 | 1 2 | rrx2pnecoorneor | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  ∨  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 6 | 3 | neeq1i | ⊢ ( 𝐴  ≠  0  ↔  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ≠  0 ) | 
						
							| 7 | 4 | neeq1i | ⊢ ( 𝐵  ≠  0  ↔  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 ) | 
						
							| 8 | 6 7 | orbi12i | ⊢ ( ( 𝐴  ≠  0  ∨  𝐵  ≠  0 )  ↔  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ≠  0  ∨  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 ) ) | 
						
							| 9 | 1 2 | rrx2pxel | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 1 )  ∈  ℂ ) | 
						
							| 11 | 1 2 | rrx2pxel | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 1 )  ∈  ℂ ) | 
						
							| 13 |  | subeq0 | ⊢ ( ( ( 𝑌 ‘ 1 )  ∈  ℂ  ∧  ( 𝑋 ‘ 1 )  ∈  ℂ )  →  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  0  ↔  ( 𝑌 ‘ 1 )  =  ( 𝑋 ‘ 1 ) ) ) | 
						
							| 14 | 10 12 13 | syl2anr | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  0  ↔  ( 𝑌 ‘ 1 )  =  ( 𝑋 ‘ 1 ) ) ) | 
						
							| 15 | 14 | necon3bid | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ≠  0  ↔  ( 𝑌 ‘ 1 )  ≠  ( 𝑋 ‘ 1 ) ) ) | 
						
							| 16 | 1 2 | rrx2pyel | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 17 | 16 | recnd | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℂ ) | 
						
							| 18 | 1 2 | rrx2pyel | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 19 | 18 | recnd | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℂ ) | 
						
							| 20 |  | subeq0 | ⊢ ( ( ( 𝑌 ‘ 2 )  ∈  ℂ  ∧  ( 𝑋 ‘ 2 )  ∈  ℂ )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 ) ) ) | 
						
							| 21 | 17 19 20 | syl2anr | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 ) ) ) | 
						
							| 22 | 21 | necon3bid | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0  ↔  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) ) ) | 
						
							| 23 | 15 22 | orbi12d | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ≠  0  ∨  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 )  ↔  ( ( 𝑌 ‘ 1 )  ≠  ( 𝑋 ‘ 1 )  ∨  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) ) ) ) | 
						
							| 24 |  | necom | ⊢ ( ( 𝑌 ‘ 1 )  ≠  ( 𝑋 ‘ 1 )  ↔  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) ) | 
						
							| 25 |  | necom | ⊢ ( ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 )  ↔  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) | 
						
							| 26 | 24 25 | orbi12i | ⊢ ( ( ( 𝑌 ‘ 1 )  ≠  ( 𝑋 ‘ 1 )  ∨  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) )  ↔  ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  ∨  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 27 | 23 26 | bitrdi | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ≠  0  ∨  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 )  ↔  ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  ∨  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 28 | 8 27 | bitrid | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( 𝐴  ≠  0  ∨  𝐵  ≠  0 )  ↔  ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  ∨  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 29 | 28 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝐴  ≠  0  ∨  𝐵  ≠  0 )  ↔  ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  ∨  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 30 | 5 29 | mpbird | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝐴  ≠  0  ∨  𝐵  ≠  0 ) ) |