Metamath Proof Explorer


Theorem rrx2pnedifcoorneor

Description: If two different points X and Y in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023)

Ref Expression
Hypotheses rrx2pnecoorneor.i 𝐼 = { 1 , 2 }
rrx2pnecoorneor.b 𝑃 = ( ℝ ↑m 𝐼 )
rrx2pnedifcoorneor.a 𝐴 = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) )
rrx2pnedifcoorneor.b 𝐵 = ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) )
Assertion rrx2pnedifcoorneor ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 rrx2pnecoorneor.i 𝐼 = { 1 , 2 }
2 rrx2pnecoorneor.b 𝑃 = ( ℝ ↑m 𝐼 )
3 rrx2pnedifcoorneor.a 𝐴 = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) )
4 rrx2pnedifcoorneor.b 𝐵 = ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) )
5 1 2 rrx2pnecoorneor ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) )
6 3 neeq1i ( 𝐴 ≠ 0 ↔ ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 )
7 4 neeq1i ( 𝐵 ≠ 0 ↔ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 )
8 6 7 orbi12i ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ∨ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ) )
9 1 2 rrx2pxel ( 𝑌𝑃 → ( 𝑌 ‘ 1 ) ∈ ℝ )
10 9 recnd ( 𝑌𝑃 → ( 𝑌 ‘ 1 ) ∈ ℂ )
11 1 2 rrx2pxel ( 𝑋𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ )
12 11 recnd ( 𝑋𝑃 → ( 𝑋 ‘ 1 ) ∈ ℂ )
13 subeq0 ( ( ( 𝑌 ‘ 1 ) ∈ ℂ ∧ ( 𝑋 ‘ 1 ) ∈ ℂ ) → ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = 0 ↔ ( 𝑌 ‘ 1 ) = ( 𝑋 ‘ 1 ) ) )
14 10 12 13 syl2anr ( ( 𝑋𝑃𝑌𝑃 ) → ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = 0 ↔ ( 𝑌 ‘ 1 ) = ( 𝑋 ‘ 1 ) ) )
15 14 necon3bid ( ( 𝑋𝑃𝑌𝑃 ) → ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ↔ ( 𝑌 ‘ 1 ) ≠ ( 𝑋 ‘ 1 ) ) )
16 1 2 rrx2pyel ( 𝑌𝑃 → ( 𝑌 ‘ 2 ) ∈ ℝ )
17 16 recnd ( 𝑌𝑃 → ( 𝑌 ‘ 2 ) ∈ ℂ )
18 1 2 rrx2pyel ( 𝑋𝑃 → ( 𝑋 ‘ 2 ) ∈ ℝ )
19 18 recnd ( 𝑋𝑃 → ( 𝑋 ‘ 2 ) ∈ ℂ )
20 subeq0 ( ( ( 𝑌 ‘ 2 ) ∈ ℂ ∧ ( 𝑋 ‘ 2 ) ∈ ℂ ) → ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = 0 ↔ ( 𝑌 ‘ 2 ) = ( 𝑋 ‘ 2 ) ) )
21 17 19 20 syl2anr ( ( 𝑋𝑃𝑌𝑃 ) → ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = 0 ↔ ( 𝑌 ‘ 2 ) = ( 𝑋 ‘ 2 ) ) )
22 21 necon3bid ( ( 𝑋𝑃𝑌𝑃 ) → ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ↔ ( 𝑌 ‘ 2 ) ≠ ( 𝑋 ‘ 2 ) ) )
23 15 22 orbi12d ( ( 𝑋𝑃𝑌𝑃 ) → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ∨ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ) ↔ ( ( 𝑌 ‘ 1 ) ≠ ( 𝑋 ‘ 1 ) ∨ ( 𝑌 ‘ 2 ) ≠ ( 𝑋 ‘ 2 ) ) ) )
24 necom ( ( 𝑌 ‘ 1 ) ≠ ( 𝑋 ‘ 1 ) ↔ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) )
25 necom ( ( 𝑌 ‘ 2 ) ≠ ( 𝑋 ‘ 2 ) ↔ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) )
26 24 25 orbi12i ( ( ( 𝑌 ‘ 1 ) ≠ ( 𝑋 ‘ 1 ) ∨ ( 𝑌 ‘ 2 ) ≠ ( 𝑋 ‘ 2 ) ) ↔ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) )
27 23 26 bitrdi ( ( 𝑋𝑃𝑌𝑃 ) → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ≠ 0 ∨ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) ≠ 0 ) ↔ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) )
28 8 27 syl5bb ( ( 𝑋𝑃𝑌𝑃 ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) )
29 28 3adant3 ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) ↔ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ∨ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) )
30 5 29 mpbird ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( 𝐴 ≠ 0 ∨ 𝐵 ≠ 0 ) )