| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2pnecoorneor.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | rrx2pnecoorneor.b |  |-  P = ( RR ^m I ) | 
						
							| 3 |  | rrx2pnedifcoorneor.a |  |-  A = ( ( Y ` 1 ) - ( X ` 1 ) ) | 
						
							| 4 |  | rrx2pnedifcoorneor.b |  |-  B = ( ( Y ` 2 ) - ( X ` 2 ) ) | 
						
							| 5 | 1 2 | rrx2pnecoorneor |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( X ` 1 ) =/= ( Y ` 1 ) \/ ( X ` 2 ) =/= ( Y ` 2 ) ) ) | 
						
							| 6 | 3 | neeq1i |  |-  ( A =/= 0 <-> ( ( Y ` 1 ) - ( X ` 1 ) ) =/= 0 ) | 
						
							| 7 | 4 | neeq1i |  |-  ( B =/= 0 <-> ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) | 
						
							| 8 | 6 7 | orbi12i |  |-  ( ( A =/= 0 \/ B =/= 0 ) <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) =/= 0 \/ ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) ) | 
						
							| 9 | 1 2 | rrx2pxel |  |-  ( Y e. P -> ( Y ` 1 ) e. RR ) | 
						
							| 10 | 9 | recnd |  |-  ( Y e. P -> ( Y ` 1 ) e. CC ) | 
						
							| 11 | 1 2 | rrx2pxel |  |-  ( X e. P -> ( X ` 1 ) e. RR ) | 
						
							| 12 | 11 | recnd |  |-  ( X e. P -> ( X ` 1 ) e. CC ) | 
						
							| 13 |  | subeq0 |  |-  ( ( ( Y ` 1 ) e. CC /\ ( X ` 1 ) e. CC ) -> ( ( ( Y ` 1 ) - ( X ` 1 ) ) = 0 <-> ( Y ` 1 ) = ( X ` 1 ) ) ) | 
						
							| 14 | 10 12 13 | syl2anr |  |-  ( ( X e. P /\ Y e. P ) -> ( ( ( Y ` 1 ) - ( X ` 1 ) ) = 0 <-> ( Y ` 1 ) = ( X ` 1 ) ) ) | 
						
							| 15 | 14 | necon3bid |  |-  ( ( X e. P /\ Y e. P ) -> ( ( ( Y ` 1 ) - ( X ` 1 ) ) =/= 0 <-> ( Y ` 1 ) =/= ( X ` 1 ) ) ) | 
						
							| 16 | 1 2 | rrx2pyel |  |-  ( Y e. P -> ( Y ` 2 ) e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( Y e. P -> ( Y ` 2 ) e. CC ) | 
						
							| 18 | 1 2 | rrx2pyel |  |-  ( X e. P -> ( X ` 2 ) e. RR ) | 
						
							| 19 | 18 | recnd |  |-  ( X e. P -> ( X ` 2 ) e. CC ) | 
						
							| 20 |  | subeq0 |  |-  ( ( ( Y ` 2 ) e. CC /\ ( X ` 2 ) e. CC ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) = 0 <-> ( Y ` 2 ) = ( X ` 2 ) ) ) | 
						
							| 21 | 17 19 20 | syl2anr |  |-  ( ( X e. P /\ Y e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) = 0 <-> ( Y ` 2 ) = ( X ` 2 ) ) ) | 
						
							| 22 | 21 | necon3bid |  |-  ( ( X e. P /\ Y e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 <-> ( Y ` 2 ) =/= ( X ` 2 ) ) ) | 
						
							| 23 | 15 22 | orbi12d |  |-  ( ( X e. P /\ Y e. P ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) =/= 0 \/ ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) <-> ( ( Y ` 1 ) =/= ( X ` 1 ) \/ ( Y ` 2 ) =/= ( X ` 2 ) ) ) ) | 
						
							| 24 |  | necom |  |-  ( ( Y ` 1 ) =/= ( X ` 1 ) <-> ( X ` 1 ) =/= ( Y ` 1 ) ) | 
						
							| 25 |  | necom |  |-  ( ( Y ` 2 ) =/= ( X ` 2 ) <-> ( X ` 2 ) =/= ( Y ` 2 ) ) | 
						
							| 26 | 24 25 | orbi12i |  |-  ( ( ( Y ` 1 ) =/= ( X ` 1 ) \/ ( Y ` 2 ) =/= ( X ` 2 ) ) <-> ( ( X ` 1 ) =/= ( Y ` 1 ) \/ ( X ` 2 ) =/= ( Y ` 2 ) ) ) | 
						
							| 27 | 23 26 | bitrdi |  |-  ( ( X e. P /\ Y e. P ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) =/= 0 \/ ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) <-> ( ( X ` 1 ) =/= ( Y ` 1 ) \/ ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) | 
						
							| 28 | 8 27 | bitrid |  |-  ( ( X e. P /\ Y e. P ) -> ( ( A =/= 0 \/ B =/= 0 ) <-> ( ( X ` 1 ) =/= ( Y ` 1 ) \/ ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) | 
						
							| 29 | 28 | 3adant3 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( A =/= 0 \/ B =/= 0 ) <-> ( ( X ` 1 ) =/= ( Y ` 1 ) \/ ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) | 
						
							| 30 | 5 29 | mpbird |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( A =/= 0 \/ B =/= 0 ) ) |