| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2pnecoorneor.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | rrx2pnecoorneor.b | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 3 |  | rrx2pnedifcoorneor.a | ⊢ 𝐴  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) | 
						
							| 4 |  | rrx2pnedifcoorneorr.b | ⊢ 𝐵  =  ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) ) | 
						
							| 5 |  | eqid | ⊢ ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) ) | 
						
							| 6 | 1 2 3 5 | rrx2pnedifcoorneor | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝐴  ≠  0  ∨  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 ) ) | 
						
							| 7 |  | eqcom | ⊢ ( ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 )  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 )  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 9 | 1 2 | rrx2pyel | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 10 | 9 | recnd | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℂ ) | 
						
							| 11 | 1 2 | rrx2pyel | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 12 | 11 | recnd | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℂ ) | 
						
							| 13 | 10 12 | anim12i | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( 𝑋 ‘ 2 )  ∈  ℂ  ∧  ( 𝑌 ‘ 2 )  ∈  ℂ ) ) | 
						
							| 14 | 13 | ancomd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( 𝑌 ‘ 2 )  ∈  ℂ  ∧  ( 𝑋 ‘ 2 )  ∈  ℂ ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑌 ‘ 2 )  ∈  ℂ  ∧  ( 𝑋 ‘ 2 )  ∈  ℂ ) ) | 
						
							| 16 |  | subeq0 | ⊢ ( ( ( 𝑌 ‘ 2 )  ∈  ℂ  ∧  ( 𝑋 ‘ 2 )  ∈  ℂ )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 ) ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  ( 𝑌 ‘ 2 )  =  ( 𝑋 ‘ 2 ) ) ) | 
						
							| 18 | 13 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑋 ‘ 2 )  ∈  ℂ  ∧  ( 𝑌 ‘ 2 )  ∈  ℂ ) ) | 
						
							| 19 |  | subeq0 | ⊢ ( ( ( 𝑋 ‘ 2 )  ∈  ℂ  ∧  ( 𝑌 ‘ 2 )  ∈  ℂ )  →  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  0  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  0  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 21 | 8 17 20 | 3bitr4d | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  0 ) ) | 
						
							| 22 | 4 | eqcomi | ⊢ ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  𝐵 | 
						
							| 23 | 22 | eqeq1i | ⊢ ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  0  ↔  𝐵  =  0 ) | 
						
							| 24 | 21 23 | bitrdi | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  0  ↔  𝐵  =  0 ) ) | 
						
							| 25 | 24 | necon3bid | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0  ↔  𝐵  ≠  0 ) ) | 
						
							| 26 | 25 | orbi2d | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝐴  ≠  0  ∨  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 )  ↔  ( 𝐴  ≠  0  ∨  𝐵  ≠  0 ) ) ) | 
						
							| 27 | 6 26 | mpbid | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝐴  ≠  0  ∨  𝐵  ≠  0 ) ) |