| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrx2xpreen.r |
⊢ 𝑅 = ( ℝ ↑m { 1 , 2 } ) |
| 2 |
|
rrx2xpref1o.1 |
⊢ 𝐹 = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ { 〈 1 , 𝑥 〉 , 〈 2 , 𝑦 〉 } ) |
| 3 |
|
prex |
⊢ { 〈 1 , 𝑥 〉 , 〈 2 , 𝑦 〉 } ∈ V |
| 4 |
2 3
|
fnmpoi |
⊢ 𝐹 Fn ( ℝ × ℝ ) |
| 5 |
|
1st2nd2 |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → 𝑧 = 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 6 |
5
|
fveq2d |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) ) |
| 7 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑧 ) 𝐹 ( 2nd ‘ 𝑧 ) ) = ( 𝐹 ‘ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 ) |
| 8 |
6 7
|
eqtr4di |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑧 ) = ( ( 1st ‘ 𝑧 ) 𝐹 ( 2nd ‘ 𝑧 ) ) ) |
| 9 |
|
xp1st |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑧 ) ∈ ℝ ) |
| 10 |
|
xp2nd |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑧 ) ∈ ℝ ) |
| 11 |
|
opeq2 |
⊢ ( 𝑥 = ( 1st ‘ 𝑧 ) → 〈 1 , 𝑥 〉 = 〈 1 , ( 1st ‘ 𝑧 ) 〉 ) |
| 12 |
11
|
preq1d |
⊢ ( 𝑥 = ( 1st ‘ 𝑧 ) → { 〈 1 , 𝑥 〉 , 〈 2 , 𝑦 〉 } = { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , 𝑦 〉 } ) |
| 13 |
|
opeq2 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → 〈 2 , 𝑦 〉 = 〈 2 , ( 2nd ‘ 𝑧 ) 〉 ) |
| 14 |
13
|
preq2d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑧 ) → { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , 𝑦 〉 } = { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } ) |
| 15 |
|
prex |
⊢ { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } ∈ V |
| 16 |
12 14 2 15
|
ovmpo |
⊢ ( ( ( 1st ‘ 𝑧 ) ∈ ℝ ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) → ( ( 1st ‘ 𝑧 ) 𝐹 ( 2nd ‘ 𝑧 ) ) = { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } ) |
| 17 |
9 10 16
|
syl2anc |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( ( 1st ‘ 𝑧 ) 𝐹 ( 2nd ‘ 𝑧 ) ) = { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } ) |
| 18 |
8 17
|
eqtrd |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑧 ) = { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } ) |
| 19 |
|
eqid |
⊢ { 1 , 2 } = { 1 , 2 } |
| 20 |
19 1
|
prelrrx2 |
⊢ ( ( ( 1st ‘ 𝑧 ) ∈ ℝ ∧ ( 2nd ‘ 𝑧 ) ∈ ℝ ) → { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } ∈ 𝑅 ) |
| 21 |
9 10 20
|
syl2anc |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } ∈ 𝑅 ) |
| 22 |
18 21
|
eqeltrd |
⊢ ( 𝑧 ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑅 ) |
| 23 |
22
|
rgen |
⊢ ∀ 𝑧 ∈ ( ℝ × ℝ ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑅 |
| 24 |
|
ffnfv |
⊢ ( 𝐹 : ( ℝ × ℝ ) ⟶ 𝑅 ↔ ( 𝐹 Fn ( ℝ × ℝ ) ∧ ∀ 𝑧 ∈ ( ℝ × ℝ ) ( 𝐹 ‘ 𝑧 ) ∈ 𝑅 ) ) |
| 25 |
4 23 24
|
mpbir2an |
⊢ 𝐹 : ( ℝ × ℝ ) ⟶ 𝑅 |
| 26 |
|
opex |
⊢ 〈 1 , ( 1st ‘ 𝑧 ) 〉 ∈ V |
| 27 |
|
opex |
⊢ 〈 2 , ( 2nd ‘ 𝑧 ) 〉 ∈ V |
| 28 |
|
opex |
⊢ 〈 1 , ( 1st ‘ 𝑤 ) 〉 ∈ V |
| 29 |
|
opex |
⊢ 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ∈ V |
| 30 |
26 27 28 29
|
preq12b |
⊢ ( { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } ↔ ( ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ∧ 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ) ∨ ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ∧ 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ) ) ) |
| 31 |
|
1ex |
⊢ 1 ∈ V |
| 32 |
|
fvex |
⊢ ( 1st ‘ 𝑧 ) ∈ V |
| 33 |
31 32
|
opth |
⊢ ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ↔ ( 1 = 1 ∧ ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ) ) |
| 34 |
33
|
simprbi |
⊢ ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 → ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ) |
| 35 |
|
2ex |
⊢ 2 ∈ V |
| 36 |
|
fvex |
⊢ ( 2nd ‘ 𝑧 ) ∈ V |
| 37 |
35 36
|
opth |
⊢ ( 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ↔ ( 2 = 2 ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) |
| 38 |
37
|
simprbi |
⊢ ( 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 → ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) |
| 39 |
34 38
|
anim12i |
⊢ ( ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ∧ 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ) → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) |
| 40 |
39
|
a1d |
⊢ ( ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ∧ 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ) → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) |
| 41 |
31 32
|
opth |
⊢ ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ↔ ( 1 = 2 ∧ ( 1st ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) |
| 42 |
35 36
|
opth |
⊢ ( 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ↔ ( 2 = 1 ∧ ( 2nd ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ) ) |
| 43 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 44 |
|
eqneqall |
⊢ ( 1 = 2 → ( 1 ≠ 2 → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) ) |
| 45 |
43 44
|
mpi |
⊢ ( 1 = 2 → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( 1 = 2 ∧ ( 1st ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ∧ ( 2 = 1 ∧ ( 2nd ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ) ) → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) |
| 47 |
41 42 46
|
syl2anb |
⊢ ( ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ∧ 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ) → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) |
| 48 |
40 47
|
jaoi |
⊢ ( ( ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ∧ 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ) ∨ ( 〈 1 , ( 1st ‘ 𝑧 ) 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ∧ 〈 2 , ( 2nd ‘ 𝑧 ) 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ) ) → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) |
| 49 |
30 48
|
sylbi |
⊢ ( { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } → ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) |
| 50 |
49
|
com12 |
⊢ ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } → ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) |
| 51 |
|
1st2nd2 |
⊢ ( 𝑤 ∈ ( ℝ × ℝ ) → 𝑤 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
| 52 |
51
|
fveq2d |
⊢ ( 𝑤 ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) ) |
| 53 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑤 ) 𝐹 ( 2nd ‘ 𝑤 ) ) = ( 𝐹 ‘ 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) |
| 54 |
52 53
|
eqtr4di |
⊢ ( 𝑤 ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑤 ) = ( ( 1st ‘ 𝑤 ) 𝐹 ( 2nd ‘ 𝑤 ) ) ) |
| 55 |
|
xp1st |
⊢ ( 𝑤 ∈ ( ℝ × ℝ ) → ( 1st ‘ 𝑤 ) ∈ ℝ ) |
| 56 |
|
xp2nd |
⊢ ( 𝑤 ∈ ( ℝ × ℝ ) → ( 2nd ‘ 𝑤 ) ∈ ℝ ) |
| 57 |
|
opeq2 |
⊢ ( 𝑥 = ( 1st ‘ 𝑤 ) → 〈 1 , 𝑥 〉 = 〈 1 , ( 1st ‘ 𝑤 ) 〉 ) |
| 58 |
57
|
preq1d |
⊢ ( 𝑥 = ( 1st ‘ 𝑤 ) → { 〈 1 , 𝑥 〉 , 〈 2 , 𝑦 〉 } = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , 𝑦 〉 } ) |
| 59 |
|
opeq2 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑤 ) → 〈 2 , 𝑦 〉 = 〈 2 , ( 2nd ‘ 𝑤 ) 〉 ) |
| 60 |
59
|
preq2d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑤 ) → { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , 𝑦 〉 } = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } ) |
| 61 |
|
prex |
⊢ { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } ∈ V |
| 62 |
58 60 2 61
|
ovmpo |
⊢ ( ( ( 1st ‘ 𝑤 ) ∈ ℝ ∧ ( 2nd ‘ 𝑤 ) ∈ ℝ ) → ( ( 1st ‘ 𝑤 ) 𝐹 ( 2nd ‘ 𝑤 ) ) = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } ) |
| 63 |
55 56 62
|
syl2anc |
⊢ ( 𝑤 ∈ ( ℝ × ℝ ) → ( ( 1st ‘ 𝑤 ) 𝐹 ( 2nd ‘ 𝑤 ) ) = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } ) |
| 64 |
54 63
|
eqtrd |
⊢ ( 𝑤 ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑤 ) = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } ) |
| 65 |
18 64
|
eqeqan12d |
⊢ ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ { 〈 1 , ( 1st ‘ 𝑧 ) 〉 , 〈 2 , ( 2nd ‘ 𝑧 ) 〉 } = { 〈 1 , ( 1st ‘ 𝑤 ) 〉 , 〈 2 , ( 2nd ‘ 𝑤 ) 〉 } ) ) |
| 66 |
5 51
|
eqeqan12d |
⊢ ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( 𝑧 = 𝑤 ↔ 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ) ) |
| 67 |
32 36
|
opth |
⊢ ( 〈 ( 1st ‘ 𝑧 ) , ( 2nd ‘ 𝑧 ) 〉 = 〈 ( 1st ‘ 𝑤 ) , ( 2nd ‘ 𝑤 ) 〉 ↔ ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) |
| 68 |
66 67
|
bitrdi |
⊢ ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( 𝑧 = 𝑤 ↔ ( ( 1st ‘ 𝑧 ) = ( 1st ‘ 𝑤 ) ∧ ( 2nd ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) ) ) ) |
| 69 |
50 65 68
|
3imtr4d |
⊢ ( ( 𝑧 ∈ ( ℝ × ℝ ) ∧ 𝑤 ∈ ( ℝ × ℝ ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) |
| 70 |
69
|
rgen2 |
⊢ ∀ 𝑧 ∈ ( ℝ × ℝ ) ∀ 𝑤 ∈ ( ℝ × ℝ ) ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) |
| 71 |
|
dff13 |
⊢ ( 𝐹 : ( ℝ × ℝ ) –1-1→ 𝑅 ↔ ( 𝐹 : ( ℝ × ℝ ) ⟶ 𝑅 ∧ ∀ 𝑧 ∈ ( ℝ × ℝ ) ∀ 𝑤 ∈ ( ℝ × ℝ ) ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) → 𝑧 = 𝑤 ) ) ) |
| 72 |
25 70 71
|
mpbir2an |
⊢ 𝐹 : ( ℝ × ℝ ) –1-1→ 𝑅 |
| 73 |
1
|
eleq2i |
⊢ ( 𝑤 ∈ 𝑅 ↔ 𝑤 ∈ ( ℝ ↑m { 1 , 2 } ) ) |
| 74 |
|
reex |
⊢ ℝ ∈ V |
| 75 |
|
prex |
⊢ { 1 , 2 } ∈ V |
| 76 |
74 75
|
elmap |
⊢ ( 𝑤 ∈ ( ℝ ↑m { 1 , 2 } ) ↔ 𝑤 : { 1 , 2 } ⟶ ℝ ) |
| 77 |
|
1re |
⊢ 1 ∈ ℝ |
| 78 |
|
2re |
⊢ 2 ∈ ℝ |
| 79 |
|
fpr2g |
⊢ ( ( 1 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 𝑤 : { 1 , 2 } ⟶ ℝ ↔ ( ( 𝑤 ‘ 1 ) ∈ ℝ ∧ ( 𝑤 ‘ 2 ) ∈ ℝ ∧ 𝑤 = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , ( 𝑤 ‘ 2 ) 〉 } ) ) ) |
| 80 |
77 78 79
|
mp2an |
⊢ ( 𝑤 : { 1 , 2 } ⟶ ℝ ↔ ( ( 𝑤 ‘ 1 ) ∈ ℝ ∧ ( 𝑤 ‘ 2 ) ∈ ℝ ∧ 𝑤 = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , ( 𝑤 ‘ 2 ) 〉 } ) ) |
| 81 |
73 76 80
|
3bitri |
⊢ ( 𝑤 ∈ 𝑅 ↔ ( ( 𝑤 ‘ 1 ) ∈ ℝ ∧ ( 𝑤 ‘ 2 ) ∈ ℝ ∧ 𝑤 = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , ( 𝑤 ‘ 2 ) 〉 } ) ) |
| 82 |
|
opeq2 |
⊢ ( 𝑢 = ( 𝑤 ‘ 1 ) → 〈 1 , 𝑢 〉 = 〈 1 , ( 𝑤 ‘ 1 ) 〉 ) |
| 83 |
82
|
preq1d |
⊢ ( 𝑢 = ( 𝑤 ‘ 1 ) → { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , 𝑣 〉 } ) |
| 84 |
83
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑤 ‘ 1 ) → ( 𝑤 = { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } ↔ 𝑤 = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , 𝑣 〉 } ) ) |
| 85 |
|
opeq2 |
⊢ ( 𝑣 = ( 𝑤 ‘ 2 ) → 〈 2 , 𝑣 〉 = 〈 2 , ( 𝑤 ‘ 2 ) 〉 ) |
| 86 |
85
|
preq2d |
⊢ ( 𝑣 = ( 𝑤 ‘ 2 ) → { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , 𝑣 〉 } = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , ( 𝑤 ‘ 2 ) 〉 } ) |
| 87 |
86
|
eqeq2d |
⊢ ( 𝑣 = ( 𝑤 ‘ 2 ) → ( 𝑤 = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , 𝑣 〉 } ↔ 𝑤 = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , ( 𝑤 ‘ 2 ) 〉 } ) ) |
| 88 |
84 87
|
rspc2ev |
⊢ ( ( ( 𝑤 ‘ 1 ) ∈ ℝ ∧ ( 𝑤 ‘ 2 ) ∈ ℝ ∧ 𝑤 = { 〈 1 , ( 𝑤 ‘ 1 ) 〉 , 〈 2 , ( 𝑤 ‘ 2 ) 〉 } ) → ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } ) |
| 89 |
81 88
|
sylbi |
⊢ ( 𝑤 ∈ 𝑅 → ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } ) |
| 90 |
|
opeq2 |
⊢ ( 𝑥 = 𝑢 → 〈 1 , 𝑥 〉 = 〈 1 , 𝑢 〉 ) |
| 91 |
90
|
preq1d |
⊢ ( 𝑥 = 𝑢 → { 〈 1 , 𝑥 〉 , 〈 2 , 𝑦 〉 } = { 〈 1 , 𝑢 〉 , 〈 2 , 𝑦 〉 } ) |
| 92 |
|
opeq2 |
⊢ ( 𝑦 = 𝑣 → 〈 2 , 𝑦 〉 = 〈 2 , 𝑣 〉 ) |
| 93 |
92
|
preq2d |
⊢ ( 𝑦 = 𝑣 → { 〈 1 , 𝑢 〉 , 〈 2 , 𝑦 〉 } = { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } ) |
| 94 |
|
prex |
⊢ { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } ∈ V |
| 95 |
91 93 2 94
|
ovmpo |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑢 𝐹 𝑣 ) = { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } ) |
| 96 |
95
|
eqeq2d |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ) → ( 𝑤 = ( 𝑢 𝐹 𝑣 ) ↔ 𝑤 = { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } ) ) |
| 97 |
96
|
2rexbiia |
⊢ ( ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) ↔ ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = { 〈 1 , 𝑢 〉 , 〈 2 , 𝑣 〉 } ) |
| 98 |
89 97
|
sylibr |
⊢ ( 𝑤 ∈ 𝑅 → ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) ) |
| 99 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 〈 𝑢 , 𝑣 〉 ) ) |
| 100 |
|
df-ov |
⊢ ( 𝑢 𝐹 𝑣 ) = ( 𝐹 ‘ 〈 𝑢 , 𝑣 〉 ) |
| 101 |
99 100
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 𝐹 ‘ 𝑧 ) = ( 𝑢 𝐹 𝑣 ) ) |
| 102 |
101
|
eqeq2d |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ( 𝑤 = ( 𝐹 ‘ 𝑧 ) ↔ 𝑤 = ( 𝑢 𝐹 𝑣 ) ) ) |
| 103 |
102
|
rexxp |
⊢ ( ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹 ‘ 𝑧 ) ↔ ∃ 𝑢 ∈ ℝ ∃ 𝑣 ∈ ℝ 𝑤 = ( 𝑢 𝐹 𝑣 ) ) |
| 104 |
98 103
|
sylibr |
⊢ ( 𝑤 ∈ 𝑅 → ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹 ‘ 𝑧 ) ) |
| 105 |
104
|
rgen |
⊢ ∀ 𝑤 ∈ 𝑅 ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹 ‘ 𝑧 ) |
| 106 |
|
dffo3 |
⊢ ( 𝐹 : ( ℝ × ℝ ) –onto→ 𝑅 ↔ ( 𝐹 : ( ℝ × ℝ ) ⟶ 𝑅 ∧ ∀ 𝑤 ∈ 𝑅 ∃ 𝑧 ∈ ( ℝ × ℝ ) 𝑤 = ( 𝐹 ‘ 𝑧 ) ) ) |
| 107 |
25 105 106
|
mpbir2an |
⊢ 𝐹 : ( ℝ × ℝ ) –onto→ 𝑅 |
| 108 |
|
df-f1o |
⊢ ( 𝐹 : ( ℝ × ℝ ) –1-1-onto→ 𝑅 ↔ ( 𝐹 : ( ℝ × ℝ ) –1-1→ 𝑅 ∧ 𝐹 : ( ℝ × ℝ ) –onto→ 𝑅 ) ) |
| 109 |
72 107 108
|
mpbir2an |
⊢ 𝐹 : ( ℝ × ℝ ) –1-1-onto→ 𝑅 |