| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2xpreen.r | ⊢ 𝑅  =  ( ℝ  ↑m  { 1 ,  2 } ) | 
						
							| 2 |  | rrx2xpref1o.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ℝ ,  𝑦  ∈  ℝ  ↦  { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 } ) | 
						
							| 3 |  | prex | ⊢ { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 }  ∈  V | 
						
							| 4 | 2 3 | fnmpoi | ⊢ 𝐹  Fn  ( ℝ  ×  ℝ ) | 
						
							| 5 |  | 1st2nd2 | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  𝑧  =  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉 ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉 ) ) | 
						
							| 7 |  | df-ov | ⊢ ( ( 1st  ‘ 𝑧 ) 𝐹 ( 2nd  ‘ 𝑧 ) )  =  ( 𝐹 ‘ 〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉 ) | 
						
							| 8 | 6 7 | eqtr4di | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑧 )  =  ( ( 1st  ‘ 𝑧 ) 𝐹 ( 2nd  ‘ 𝑧 ) ) ) | 
						
							| 9 |  | xp1st | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 10 |  | xp2nd | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ 𝑧 )  ∈  ℝ ) | 
						
							| 11 |  | opeq2 | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑧 )  →  〈 1 ,  𝑥 〉  =  〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ) | 
						
							| 12 | 11 | preq1d | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑧 )  →  { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  𝑦 〉 } ) | 
						
							| 13 |  | opeq2 | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑧 )  →  〈 2 ,  𝑦 〉  =  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 ) | 
						
							| 14 | 13 | preq2d | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑧 )  →  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 } ) | 
						
							| 15 |  | prex | ⊢ { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  ∈  V | 
						
							| 16 | 12 14 2 15 | ovmpo | ⊢ ( ( ( 1st  ‘ 𝑧 )  ∈  ℝ  ∧  ( 2nd  ‘ 𝑧 )  ∈  ℝ )  →  ( ( 1st  ‘ 𝑧 ) 𝐹 ( 2nd  ‘ 𝑧 ) )  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 } ) | 
						
							| 17 | 9 10 16 | syl2anc | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( ( 1st  ‘ 𝑧 ) 𝐹 ( 2nd  ‘ 𝑧 ) )  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 } ) | 
						
							| 18 | 8 17 | eqtrd | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑧 )  =  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 } ) | 
						
							| 19 |  | eqid | ⊢ { 1 ,  2 }  =  { 1 ,  2 } | 
						
							| 20 | 19 1 | prelrrx2 | ⊢ ( ( ( 1st  ‘ 𝑧 )  ∈  ℝ  ∧  ( 2nd  ‘ 𝑧 )  ∈  ℝ )  →  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  ∈  𝑅 ) | 
						
							| 21 | 9 10 20 | syl2anc | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  ∈  𝑅 ) | 
						
							| 22 | 18 21 | eqeltrd | ⊢ ( 𝑧  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝑅 ) | 
						
							| 23 | 22 | rgen | ⊢ ∀ 𝑧  ∈  ( ℝ  ×  ℝ ) ( 𝐹 ‘ 𝑧 )  ∈  𝑅 | 
						
							| 24 |  | ffnfv | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) ⟶ 𝑅  ↔  ( 𝐹  Fn  ( ℝ  ×  ℝ )  ∧  ∀ 𝑧  ∈  ( ℝ  ×  ℝ ) ( 𝐹 ‘ 𝑧 )  ∈  𝑅 ) ) | 
						
							| 25 | 4 23 24 | mpbir2an | ⊢ 𝐹 : ( ℝ  ×  ℝ ) ⟶ 𝑅 | 
						
							| 26 |  | opex | ⊢ 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  ∈  V | 
						
							| 27 |  | opex | ⊢ 〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  ∈  V | 
						
							| 28 |  | opex | ⊢ 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∈  V | 
						
							| 29 |  | opex | ⊢ 〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ∈  V | 
						
							| 30 | 26 27 28 29 | preq12b | ⊢ ( { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 }  ↔  ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  ∨  ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ) ) ) | 
						
							| 31 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 32 |  | fvex | ⊢ ( 1st  ‘ 𝑧 )  ∈  V | 
						
							| 33 | 31 32 | opth | ⊢ ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ↔  ( 1  =  1  ∧  ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 ) ) ) | 
						
							| 34 | 33 | simprbi | ⊢ ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  →  ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 ) ) | 
						
							| 35 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 36 |  | fvex | ⊢ ( 2nd  ‘ 𝑧 )  ∈  V | 
						
							| 37 | 35 36 | opth | ⊢ ( 〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ↔  ( 2  =  2  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 38 | 37 | simprbi | ⊢ ( 〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  →  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) | 
						
							| 39 | 34 38 | anim12i | ⊢ ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 40 | 39 | a1d | ⊢ ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 41 | 31 32 | opth | ⊢ ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ↔  ( 1  =  2  ∧  ( 1st  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 42 | 35 36 | opth | ⊢ ( 〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ↔  ( 2  =  1  ∧  ( 2nd  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 ) ) ) | 
						
							| 43 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 44 |  | eqneqall | ⊢ ( 1  =  2  →  ( 1  ≠  2  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) ) | 
						
							| 45 | 43 44 | mpi | ⊢ ( 1  =  2  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 46 | 45 | ad2antrr | ⊢ ( ( ( 1  =  2  ∧  ( 1st  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) )  ∧  ( 2  =  1  ∧  ( 2nd  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 ) ) )  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 47 | 41 42 46 | syl2anb | ⊢ ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 )  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 48 | 40 47 | jaoi | ⊢ ( ( ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 )  ∨  ( 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉  ∧  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ) )  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 49 | 30 48 | sylbi | ⊢ ( { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 }  →  ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 50 | 49 | com12 | ⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 }  →  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 51 |  | 1st2nd2 | ⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  𝑤  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) | 
						
							| 52 | 51 | fveq2d | ⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) ) | 
						
							| 53 |  | df-ov | ⊢ ( ( 1st  ‘ 𝑤 ) 𝐹 ( 2nd  ‘ 𝑤 ) )  =  ( 𝐹 ‘ 〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) | 
						
							| 54 | 52 53 | eqtr4di | ⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑤 )  =  ( ( 1st  ‘ 𝑤 ) 𝐹 ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 55 |  | xp1st | ⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ 𝑤 )  ∈  ℝ ) | 
						
							| 56 |  | xp2nd | ⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ 𝑤 )  ∈  ℝ ) | 
						
							| 57 |  | opeq2 | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑤 )  →  〈 1 ,  𝑥 〉  =  〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ) | 
						
							| 58 | 57 | preq1d | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑤 )  →  { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  𝑦 〉 } ) | 
						
							| 59 |  | opeq2 | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑤 )  →  〈 2 ,  𝑦 〉  =  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 ) | 
						
							| 60 | 59 | preq2d | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑤 )  →  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } ) | 
						
							| 61 |  | prex | ⊢ { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 }  ∈  V | 
						
							| 62 | 58 60 2 61 | ovmpo | ⊢ ( ( ( 1st  ‘ 𝑤 )  ∈  ℝ  ∧  ( 2nd  ‘ 𝑤 )  ∈  ℝ )  →  ( ( 1st  ‘ 𝑤 ) 𝐹 ( 2nd  ‘ 𝑤 ) )  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } ) | 
						
							| 63 | 55 56 62 | syl2anc | ⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( ( 1st  ‘ 𝑤 ) 𝐹 ( 2nd  ‘ 𝑤 ) )  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } ) | 
						
							| 64 | 54 63 | eqtrd | ⊢ ( 𝑤  ∈  ( ℝ  ×  ℝ )  →  ( 𝐹 ‘ 𝑤 )  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } ) | 
						
							| 65 | 18 64 | eqeqan12d | ⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  ↔  { 〈 1 ,  ( 1st  ‘ 𝑧 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑧 ) 〉 }  =  { 〈 1 ,  ( 1st  ‘ 𝑤 ) 〉 ,  〈 2 ,  ( 2nd  ‘ 𝑤 ) 〉 } ) ) | 
						
							| 66 | 5 51 | eqeqan12d | ⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( 𝑧  =  𝑤  ↔  〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉 ) ) | 
						
							| 67 | 32 36 | opth | ⊢ ( 〈 ( 1st  ‘ 𝑧 ) ,  ( 2nd  ‘ 𝑧 ) 〉  =  〈 ( 1st  ‘ 𝑤 ) ,  ( 2nd  ‘ 𝑤 ) 〉  ↔  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) | 
						
							| 68 | 66 67 | bitrdi | ⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( 𝑧  =  𝑤  ↔  ( ( 1st  ‘ 𝑧 )  =  ( 1st  ‘ 𝑤 )  ∧  ( 2nd  ‘ 𝑧 )  =  ( 2nd  ‘ 𝑤 ) ) ) ) | 
						
							| 69 | 50 65 68 | 3imtr4d | ⊢ ( ( 𝑧  ∈  ( ℝ  ×  ℝ )  ∧  𝑤  ∈  ( ℝ  ×  ℝ ) )  →  ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) | 
						
							| 70 | 69 | rgen2 | ⊢ ∀ 𝑧  ∈  ( ℝ  ×  ℝ ) ∀ 𝑤  ∈  ( ℝ  ×  ℝ ) ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  →  𝑧  =  𝑤 ) | 
						
							| 71 |  | dff13 | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –1-1→ 𝑅  ↔  ( 𝐹 : ( ℝ  ×  ℝ ) ⟶ 𝑅  ∧  ∀ 𝑧  ∈  ( ℝ  ×  ℝ ) ∀ 𝑤  ∈  ( ℝ  ×  ℝ ) ( ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 𝑤 )  →  𝑧  =  𝑤 ) ) ) | 
						
							| 72 | 25 70 71 | mpbir2an | ⊢ 𝐹 : ( ℝ  ×  ℝ ) –1-1→ 𝑅 | 
						
							| 73 | 1 | eleq2i | ⊢ ( 𝑤  ∈  𝑅  ↔  𝑤  ∈  ( ℝ  ↑m  { 1 ,  2 } ) ) | 
						
							| 74 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 75 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 76 | 74 75 | elmap | ⊢ ( 𝑤  ∈  ( ℝ  ↑m  { 1 ,  2 } )  ↔  𝑤 : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 77 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 78 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 79 |  | fpr2g | ⊢ ( ( 1  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( 𝑤 : { 1 ,  2 } ⟶ ℝ  ↔  ( ( 𝑤 ‘ 1 )  ∈  ℝ  ∧  ( 𝑤 ‘ 2 )  ∈  ℝ  ∧  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) ) ) | 
						
							| 80 | 77 78 79 | mp2an | ⊢ ( 𝑤 : { 1 ,  2 } ⟶ ℝ  ↔  ( ( 𝑤 ‘ 1 )  ∈  ℝ  ∧  ( 𝑤 ‘ 2 )  ∈  ℝ  ∧  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) ) | 
						
							| 81 | 73 76 80 | 3bitri | ⊢ ( 𝑤  ∈  𝑅  ↔  ( ( 𝑤 ‘ 1 )  ∈  ℝ  ∧  ( 𝑤 ‘ 2 )  ∈  ℝ  ∧  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) ) | 
						
							| 82 |  | opeq2 | ⊢ ( 𝑢  =  ( 𝑤 ‘ 1 )  →  〈 1 ,  𝑢 〉  =  〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ) | 
						
							| 83 | 82 | preq1d | ⊢ ( 𝑢  =  ( 𝑤 ‘ 1 )  →  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 }  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  𝑣 〉 } ) | 
						
							| 84 | 83 | eqeq2d | ⊢ ( 𝑢  =  ( 𝑤 ‘ 1 )  →  ( 𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 }  ↔  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  𝑣 〉 } ) ) | 
						
							| 85 |  | opeq2 | ⊢ ( 𝑣  =  ( 𝑤 ‘ 2 )  →  〈 2 ,  𝑣 〉  =  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 ) | 
						
							| 86 | 85 | preq2d | ⊢ ( 𝑣  =  ( 𝑤 ‘ 2 )  →  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  𝑣 〉 }  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) | 
						
							| 87 | 86 | eqeq2d | ⊢ ( 𝑣  =  ( 𝑤 ‘ 2 )  →  ( 𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  𝑣 〉 }  ↔  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } ) ) | 
						
							| 88 | 84 87 | rspc2ev | ⊢ ( ( ( 𝑤 ‘ 1 )  ∈  ℝ  ∧  ( 𝑤 ‘ 2 )  ∈  ℝ  ∧  𝑤  =  { 〈 1 ,  ( 𝑤 ‘ 1 ) 〉 ,  〈 2 ,  ( 𝑤 ‘ 2 ) 〉 } )  →  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } ) | 
						
							| 89 | 81 88 | sylbi | ⊢ ( 𝑤  ∈  𝑅  →  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } ) | 
						
							| 90 |  | opeq2 | ⊢ ( 𝑥  =  𝑢  →  〈 1 ,  𝑥 〉  =  〈 1 ,  𝑢 〉 ) | 
						
							| 91 | 90 | preq1d | ⊢ ( 𝑥  =  𝑢  →  { 〈 1 ,  𝑥 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑦 〉 } ) | 
						
							| 92 |  | opeq2 | ⊢ ( 𝑦  =  𝑣  →  〈 2 ,  𝑦 〉  =  〈 2 ,  𝑣 〉 ) | 
						
							| 93 | 92 | preq2d | ⊢ ( 𝑦  =  𝑣  →  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑦 〉 }  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } ) | 
						
							| 94 |  | prex | ⊢ { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 }  ∈  V | 
						
							| 95 | 91 93 2 94 | ovmpo | ⊢ ( ( 𝑢  ∈  ℝ  ∧  𝑣  ∈  ℝ )  →  ( 𝑢 𝐹 𝑣 )  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } ) | 
						
							| 96 | 95 | eqeq2d | ⊢ ( ( 𝑢  ∈  ℝ  ∧  𝑣  ∈  ℝ )  →  ( 𝑤  =  ( 𝑢 𝐹 𝑣 )  ↔  𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } ) ) | 
						
							| 97 | 96 | 2rexbiia | ⊢ ( ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  ( 𝑢 𝐹 𝑣 )  ↔  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  { 〈 1 ,  𝑢 〉 ,  〈 2 ,  𝑣 〉 } ) | 
						
							| 98 | 89 97 | sylibr | ⊢ ( 𝑤  ∈  𝑅  →  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  ( 𝑢 𝐹 𝑣 ) ) | 
						
							| 99 |  | fveq2 | ⊢ ( 𝑧  =  〈 𝑢 ,  𝑣 〉  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 〈 𝑢 ,  𝑣 〉 ) ) | 
						
							| 100 |  | df-ov | ⊢ ( 𝑢 𝐹 𝑣 )  =  ( 𝐹 ‘ 〈 𝑢 ,  𝑣 〉 ) | 
						
							| 101 | 99 100 | eqtr4di | ⊢ ( 𝑧  =  〈 𝑢 ,  𝑣 〉  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑢 𝐹 𝑣 ) ) | 
						
							| 102 | 101 | eqeq2d | ⊢ ( 𝑧  =  〈 𝑢 ,  𝑣 〉  →  ( 𝑤  =  ( 𝐹 ‘ 𝑧 )  ↔  𝑤  =  ( 𝑢 𝐹 𝑣 ) ) ) | 
						
							| 103 | 102 | rexxp | ⊢ ( ∃ 𝑧  ∈  ( ℝ  ×  ℝ ) 𝑤  =  ( 𝐹 ‘ 𝑧 )  ↔  ∃ 𝑢  ∈  ℝ ∃ 𝑣  ∈  ℝ 𝑤  =  ( 𝑢 𝐹 𝑣 ) ) | 
						
							| 104 | 98 103 | sylibr | ⊢ ( 𝑤  ∈  𝑅  →  ∃ 𝑧  ∈  ( ℝ  ×  ℝ ) 𝑤  =  ( 𝐹 ‘ 𝑧 ) ) | 
						
							| 105 | 104 | rgen | ⊢ ∀ 𝑤  ∈  𝑅 ∃ 𝑧  ∈  ( ℝ  ×  ℝ ) 𝑤  =  ( 𝐹 ‘ 𝑧 ) | 
						
							| 106 |  | dffo3 | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –onto→ 𝑅  ↔  ( 𝐹 : ( ℝ  ×  ℝ ) ⟶ 𝑅  ∧  ∀ 𝑤  ∈  𝑅 ∃ 𝑧  ∈  ( ℝ  ×  ℝ ) 𝑤  =  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 107 | 25 105 106 | mpbir2an | ⊢ 𝐹 : ( ℝ  ×  ℝ ) –onto→ 𝑅 | 
						
							| 108 |  | df-f1o | ⊢ ( 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ 𝑅  ↔  ( 𝐹 : ( ℝ  ×  ℝ ) –1-1→ 𝑅  ∧  𝐹 : ( ℝ  ×  ℝ ) –onto→ 𝑅 ) ) | 
						
							| 109 | 72 107 108 | mpbir2an | ⊢ 𝐹 : ( ℝ  ×  ℝ ) –1-1-onto→ 𝑅 |