Metamath Proof Explorer


Theorem rrx2xpref1o

Description: There is a bijection between the set of ordered pairs of real numbers (the cartesian product of the real numbers) and the set of points in the two dimensional Euclidean plane (represented as mappings from { 1 , 2 } to the real numbers). (Contributed by AV, 12-Mar-2023)

Ref Expression
Hypotheses rrx2xpreen.r R = 1 2
rrx2xpref1o.1 F = x , y 1 x 2 y
Assertion rrx2xpref1o F : 2 1-1 onto R

Proof

Step Hyp Ref Expression
1 rrx2xpreen.r R = 1 2
2 rrx2xpref1o.1 F = x , y 1 x 2 y
3 prex 1 x 2 y V
4 2 3 fnmpoi F Fn 2
5 1st2nd2 z 2 z = 1 st z 2 nd z
6 5 fveq2d z 2 F z = F 1 st z 2 nd z
7 df-ov 1 st z F 2 nd z = F 1 st z 2 nd z
8 6 7 eqtr4di z 2 F z = 1 st z F 2 nd z
9 xp1st z 2 1 st z
10 xp2nd z 2 2 nd z
11 opeq2 x = 1 st z 1 x = 1 1 st z
12 11 preq1d x = 1 st z 1 x 2 y = 1 1 st z 2 y
13 opeq2 y = 2 nd z 2 y = 2 2 nd z
14 13 preq2d y = 2 nd z 1 1 st z 2 y = 1 1 st z 2 2 nd z
15 prex 1 1 st z 2 2 nd z V
16 12 14 2 15 ovmpo 1 st z 2 nd z 1 st z F 2 nd z = 1 1 st z 2 2 nd z
17 9 10 16 syl2anc z 2 1 st z F 2 nd z = 1 1 st z 2 2 nd z
18 8 17 eqtrd z 2 F z = 1 1 st z 2 2 nd z
19 eqid 1 2 = 1 2
20 19 1 prelrrx2 1 st z 2 nd z 1 1 st z 2 2 nd z R
21 9 10 20 syl2anc z 2 1 1 st z 2 2 nd z R
22 18 21 eqeltrd z 2 F z R
23 22 rgen z 2 F z R
24 ffnfv F : 2 R F Fn 2 z 2 F z R
25 4 23 24 mpbir2an F : 2 R
26 opex 1 1 st z V
27 opex 2 2 nd z V
28 opex 1 1 st w V
29 opex 2 2 nd w V
30 26 27 28 29 preq12b 1 1 st z 2 2 nd z = 1 1 st w 2 2 nd w 1 1 st z = 1 1 st w 2 2 nd z = 2 2 nd w 1 1 st z = 2 2 nd w 2 2 nd z = 1 1 st w
31 1ex 1 V
32 fvex 1 st z V
33 31 32 opth 1 1 st z = 1 1 st w 1 = 1 1 st z = 1 st w
34 33 simprbi 1 1 st z = 1 1 st w 1 st z = 1 st w
35 2ex 2 V
36 fvex 2 nd z V
37 35 36 opth 2 2 nd z = 2 2 nd w 2 = 2 2 nd z = 2 nd w
38 37 simprbi 2 2 nd z = 2 2 nd w 2 nd z = 2 nd w
39 34 38 anim12i 1 1 st z = 1 1 st w 2 2 nd z = 2 2 nd w 1 st z = 1 st w 2 nd z = 2 nd w
40 39 a1d 1 1 st z = 1 1 st w 2 2 nd z = 2 2 nd w z 2 w 2 1 st z = 1 st w 2 nd z = 2 nd w
41 31 32 opth 1 1 st z = 2 2 nd w 1 = 2 1 st z = 2 nd w
42 35 36 opth 2 2 nd z = 1 1 st w 2 = 1 2 nd z = 1 st w
43 1ne2 1 2
44 eqneqall 1 = 2 1 2 z 2 w 2 1 st z = 1 st w 2 nd z = 2 nd w
45 43 44 mpi 1 = 2 z 2 w 2 1 st z = 1 st w 2 nd z = 2 nd w
46 45 ad2antrr 1 = 2 1 st z = 2 nd w 2 = 1 2 nd z = 1 st w z 2 w 2 1 st z = 1 st w 2 nd z = 2 nd w
47 41 42 46 syl2anb 1 1 st z = 2 2 nd w 2 2 nd z = 1 1 st w z 2 w 2 1 st z = 1 st w 2 nd z = 2 nd w
48 40 47 jaoi 1 1 st z = 1 1 st w 2 2 nd z = 2 2 nd w 1 1 st z = 2 2 nd w 2 2 nd z = 1 1 st w z 2 w 2 1 st z = 1 st w 2 nd z = 2 nd w
49 30 48 sylbi 1 1 st z 2 2 nd z = 1 1 st w 2 2 nd w z 2 w 2 1 st z = 1 st w 2 nd z = 2 nd w
50 49 com12 z 2 w 2 1 1 st z 2 2 nd z = 1 1 st w 2 2 nd w 1 st z = 1 st w 2 nd z = 2 nd w
51 1st2nd2 w 2 w = 1 st w 2 nd w
52 51 fveq2d w 2 F w = F 1 st w 2 nd w
53 df-ov 1 st w F 2 nd w = F 1 st w 2 nd w
54 52 53 eqtr4di w 2 F w = 1 st w F 2 nd w
55 xp1st w 2 1 st w
56 xp2nd w 2 2 nd w
57 opeq2 x = 1 st w 1 x = 1 1 st w
58 57 preq1d x = 1 st w 1 x 2 y = 1 1 st w 2 y
59 opeq2 y = 2 nd w 2 y = 2 2 nd w
60 59 preq2d y = 2 nd w 1 1 st w 2 y = 1 1 st w 2 2 nd w
61 prex 1 1 st w 2 2 nd w V
62 58 60 2 61 ovmpo 1 st w 2 nd w 1 st w F 2 nd w = 1 1 st w 2 2 nd w
63 55 56 62 syl2anc w 2 1 st w F 2 nd w = 1 1 st w 2 2 nd w
64 54 63 eqtrd w 2 F w = 1 1 st w 2 2 nd w
65 18 64 eqeqan12d z 2 w 2 F z = F w 1 1 st z 2 2 nd z = 1 1 st w 2 2 nd w
66 5 51 eqeqan12d z 2 w 2 z = w 1 st z 2 nd z = 1 st w 2 nd w
67 32 36 opth 1 st z 2 nd z = 1 st w 2 nd w 1 st z = 1 st w 2 nd z = 2 nd w
68 66 67 bitrdi z 2 w 2 z = w 1 st z = 1 st w 2 nd z = 2 nd w
69 50 65 68 3imtr4d z 2 w 2 F z = F w z = w
70 69 rgen2 z 2 w 2 F z = F w z = w
71 dff13 F : 2 1-1 R F : 2 R z 2 w 2 F z = F w z = w
72 25 70 71 mpbir2an F : 2 1-1 R
73 1 eleq2i w R w 1 2
74 reex V
75 prex 1 2 V
76 74 75 elmap w 1 2 w : 1 2
77 1re 1
78 2re 2
79 fpr2g 1 2 w : 1 2 w 1 w 2 w = 1 w 1 2 w 2
80 77 78 79 mp2an w : 1 2 w 1 w 2 w = 1 w 1 2 w 2
81 73 76 80 3bitri w R w 1 w 2 w = 1 w 1 2 w 2
82 opeq2 u = w 1 1 u = 1 w 1
83 82 preq1d u = w 1 1 u 2 v = 1 w 1 2 v
84 83 eqeq2d u = w 1 w = 1 u 2 v w = 1 w 1 2 v
85 opeq2 v = w 2 2 v = 2 w 2
86 85 preq2d v = w 2 1 w 1 2 v = 1 w 1 2 w 2
87 86 eqeq2d v = w 2 w = 1 w 1 2 v w = 1 w 1 2 w 2
88 84 87 rspc2ev w 1 w 2 w = 1 w 1 2 w 2 u v w = 1 u 2 v
89 81 88 sylbi w R u v w = 1 u 2 v
90 opeq2 x = u 1 x = 1 u
91 90 preq1d x = u 1 x 2 y = 1 u 2 y
92 opeq2 y = v 2 y = 2 v
93 92 preq2d y = v 1 u 2 y = 1 u 2 v
94 prex 1 u 2 v V
95 91 93 2 94 ovmpo u v u F v = 1 u 2 v
96 95 eqeq2d u v w = u F v w = 1 u 2 v
97 96 2rexbiia u v w = u F v u v w = 1 u 2 v
98 89 97 sylibr w R u v w = u F v
99 fveq2 z = u v F z = F u v
100 df-ov u F v = F u v
101 99 100 eqtr4di z = u v F z = u F v
102 101 eqeq2d z = u v w = F z w = u F v
103 102 rexxp z 2 w = F z u v w = u F v
104 98 103 sylibr w R z 2 w = F z
105 104 rgen w R z 2 w = F z
106 dffo3 F : 2 onto R F : 2 R w R z 2 w = F z
107 25 105 106 mpbir2an F : 2 onto R
108 df-f1o F : 2 1-1 onto R F : 2 1-1 R F : 2 onto R
109 72 107 108 mpbir2an F : 2 1-1 onto R