Metamath Proof Explorer


Theorem prelrrx2

Description: An unordered pair of ordered pairs with first components 1 and 2 and real numbers as second components is a point in a real Euclidean space of dimension 2. (Contributed by AV, 4-Feb-2023)

Ref Expression
Hypotheses prelrrx2.i 𝐼 = { 1 , 2 }
prelrrx2.b 𝑃 = ( ℝ ↑m 𝐼 )
Assertion prelrrx2 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∈ 𝑃 )

Proof

Step Hyp Ref Expression
1 prelrrx2.i 𝐼 = { 1 , 2 }
2 prelrrx2.b 𝑃 = ( ℝ ↑m 𝐼 )
3 1ex 1 ∈ V
4 2ex 2 ∈ V
5 3 4 pm3.2i ( 1 ∈ V ∧ 2 ∈ V )
6 5 a1i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1 ∈ V ∧ 2 ∈ V ) )
7 id ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) )
8 1ne2 1 ≠ 2
9 8 a1i ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 1 ≠ 2 )
10 6 7 9 3jca ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 1 ≠ 2 ) )
11 fprg ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 1 ≠ 2 ) → { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : { 1 , 2 } ⟶ { 𝐴 , 𝐵 } )
12 10 11 syl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : { 1 , 2 } ⟶ { 𝐴 , 𝐵 } )
13 prssi ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { 𝐴 , 𝐵 } ⊆ ℝ )
14 12 13 fssd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : { 1 , 2 } ⟶ ℝ )
15 reex ℝ ∈ V
16 prex { 1 , 2 } ∈ V
17 15 16 pm3.2i ( ℝ ∈ V ∧ { 1 , 2 } ∈ V )
18 elmapg ( ( ℝ ∈ V ∧ { 1 , 2 } ∈ V ) → ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∈ ( ℝ ↑m { 1 , 2 } ) ↔ { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : { 1 , 2 } ⟶ ℝ ) )
19 17 18 ax-mp ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∈ ( ℝ ↑m { 1 , 2 } ) ↔ { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } : { 1 , 2 } ⟶ ℝ )
20 14 19 sylibr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∈ ( ℝ ↑m { 1 , 2 } ) )
21 1 oveq2i ( ℝ ↑m 𝐼 ) = ( ℝ ↑m { 1 , 2 } )
22 2 21 eqtri 𝑃 = ( ℝ ↑m { 1 , 2 } )
23 22 eleq2i ( { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∈ 𝑃 ↔ { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∈ ( ℝ ↑m { 1 , 2 } ) )
24 20 23 sylibr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { ⟨ 1 , 𝐴 ⟩ , ⟨ 2 , 𝐵 ⟩ } ∈ 𝑃 )