| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prelrrx2.i |
|- I = { 1 , 2 } |
| 2 |
|
prelrrx2.b |
|- P = ( RR ^m I ) |
| 3 |
2
|
eleq2i |
|- ( Z e. P <-> Z e. ( RR ^m I ) ) |
| 4 |
1
|
oveq2i |
|- ( RR ^m I ) = ( RR ^m { 1 , 2 } ) |
| 5 |
4
|
eleq2i |
|- ( Z e. ( RR ^m I ) <-> Z e. ( RR ^m { 1 , 2 } ) ) |
| 6 |
3 5
|
bitri |
|- ( Z e. P <-> Z e. ( RR ^m { 1 , 2 } ) ) |
| 7 |
|
elmapi |
|- ( Z e. ( RR ^m { 1 , 2 } ) -> Z : { 1 , 2 } --> RR ) |
| 8 |
|
1ne2 |
|- 1 =/= 2 |
| 9 |
|
1ex |
|- 1 e. _V |
| 10 |
|
2ex |
|- 2 e. _V |
| 11 |
9 10
|
fprb |
|- ( 1 =/= 2 -> ( Z : { 1 , 2 } --> RR <-> E. x e. RR E. y e. RR Z = { <. 1 , x >. , <. 2 , y >. } ) ) |
| 12 |
8 11
|
ax-mp |
|- ( Z : { 1 , 2 } --> RR <-> E. x e. RR E. y e. RR Z = { <. 1 , x >. , <. 2 , y >. } ) |
| 13 |
|
fveq1 |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( Z ` 1 ) = ( { <. 1 , x >. , <. 2 , y >. } ` 1 ) ) |
| 14 |
|
vex |
|- x e. _V |
| 15 |
9 14
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , x >. , <. 2 , y >. } ` 1 ) = x ) |
| 16 |
8 15
|
ax-mp |
|- ( { <. 1 , x >. , <. 2 , y >. } ` 1 ) = x |
| 17 |
13 16
|
eqtrdi |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( Z ` 1 ) = x ) |
| 18 |
17
|
eqeq1d |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( Z ` 1 ) = A <-> x = A ) ) |
| 19 |
|
fveq1 |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( Z ` 2 ) = ( { <. 1 , x >. , <. 2 , y >. } ` 2 ) ) |
| 20 |
|
vex |
|- y e. _V |
| 21 |
10 20
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , x >. , <. 2 , y >. } ` 2 ) = y ) |
| 22 |
8 21
|
ax-mp |
|- ( { <. 1 , x >. , <. 2 , y >. } ` 2 ) = y |
| 23 |
19 22
|
eqtrdi |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( Z ` 2 ) = y ) |
| 24 |
23
|
eqeq1d |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( Z ` 2 ) = B <-> y = B ) ) |
| 25 |
18 24
|
anbi12d |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) <-> ( x = A /\ y = B ) ) ) |
| 26 |
25
|
adantl |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) <-> ( x = A /\ y = B ) ) ) |
| 27 |
|
opeq2 |
|- ( x = A -> <. 1 , x >. = <. 1 , A >. ) |
| 28 |
27
|
adantr |
|- ( ( x = A /\ y = B ) -> <. 1 , x >. = <. 1 , A >. ) |
| 29 |
|
opeq2 |
|- ( y = B -> <. 2 , y >. = <. 2 , B >. ) |
| 30 |
29
|
adantl |
|- ( ( x = A /\ y = B ) -> <. 2 , y >. = <. 2 , B >. ) |
| 31 |
28 30
|
preq12d |
|- ( ( x = A /\ y = B ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , A >. , <. 2 , B >. } ) |
| 32 |
31
|
eqeq2d |
|- ( ( x = A /\ y = B ) -> ( Z = { <. 1 , x >. , <. 2 , y >. } <-> Z = { <. 1 , A >. , <. 2 , B >. } ) ) |
| 33 |
32
|
biimpcd |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( x = A /\ y = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) |
| 34 |
33
|
adantl |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( x = A /\ y = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) |
| 35 |
26 34
|
sylbid |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) |
| 36 |
35
|
ex |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) -> ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) |
| 37 |
36
|
rexlimdvva |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( E. x e. RR E. y e. RR Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) |
| 38 |
12 37
|
biimtrid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z : { 1 , 2 } --> RR -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) |
| 39 |
7 38
|
syl5 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. ( RR ^m { 1 , 2 } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) |
| 40 |
6 39
|
biimtrid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. P -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) |
| 41 |
40
|
imp |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) |
| 42 |
17
|
eqeq1d |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( Z ` 1 ) = X <-> x = X ) ) |
| 43 |
23
|
eqeq1d |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( Z ` 2 ) = Y <-> y = Y ) ) |
| 44 |
42 43
|
anbi12d |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) <-> ( x = X /\ y = Y ) ) ) |
| 45 |
44
|
adantl |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) <-> ( x = X /\ y = Y ) ) ) |
| 46 |
|
opeq2 |
|- ( x = X -> <. 1 , x >. = <. 1 , X >. ) |
| 47 |
46
|
adantr |
|- ( ( x = X /\ y = Y ) -> <. 1 , x >. = <. 1 , X >. ) |
| 48 |
|
opeq2 |
|- ( y = Y -> <. 2 , y >. = <. 2 , Y >. ) |
| 49 |
48
|
adantl |
|- ( ( x = X /\ y = Y ) -> <. 2 , y >. = <. 2 , Y >. ) |
| 50 |
47 49
|
preq12d |
|- ( ( x = X /\ y = Y ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , X >. , <. 2 , Y >. } ) |
| 51 |
50
|
eqeq2d |
|- ( ( x = X /\ y = Y ) -> ( Z = { <. 1 , x >. , <. 2 , y >. } <-> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) |
| 52 |
51
|
biimpcd |
|- ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( x = X /\ y = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) |
| 53 |
52
|
adantl |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( x = X /\ y = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) |
| 54 |
45 53
|
sylbid |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) |
| 55 |
54
|
ex |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) -> ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) |
| 56 |
55
|
rexlimdvva |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( E. x e. RR E. y e. RR Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) |
| 57 |
12 56
|
biimtrid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z : { 1 , 2 } --> RR -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) |
| 58 |
7 57
|
syl5 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. ( RR ^m { 1 , 2 } ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) |
| 59 |
6 58
|
biimtrid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. P -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) |
| 60 |
59
|
imp |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) |
| 61 |
41 60
|
orim12d |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) -> ( ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) -> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) |
| 62 |
61
|
imp |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) -> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) |
| 63 |
|
elprg |
|- ( Z e. P -> ( Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } <-> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) |
| 64 |
63
|
ad2antlr |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) -> ( Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } <-> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) |
| 65 |
62 64
|
mpbird |
|- ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) -> Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } ) |
| 66 |
65
|
expl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) -> Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } ) ) |
| 67 |
|
elpri |
|- ( Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } -> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) |
| 68 |
1 2
|
prelrrx2 |
|- ( ( A e. RR /\ B e. RR ) -> { <. 1 , A >. , <. 2 , B >. } e. P ) |
| 69 |
68
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> { <. 1 , A >. , <. 2 , B >. } e. P ) |
| 70 |
|
eleq1 |
|- ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( Z e. P <-> { <. 1 , A >. , <. 2 , B >. } e. P ) ) |
| 71 |
70
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( Z e. P <-> { <. 1 , A >. , <. 2 , B >. } e. P ) ) |
| 72 |
69 71
|
mpbird |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> Z e. P ) |
| 73 |
|
simpl |
|- ( ( A e. RR /\ B e. RR ) -> A e. RR ) |
| 74 |
8
|
a1i |
|- ( ( A e. RR /\ B e. RR ) -> 1 =/= 2 ) |
| 75 |
|
fvpr1g |
|- ( ( 1 e. _V /\ A e. RR /\ 1 =/= 2 ) -> ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A ) |
| 76 |
9 73 74 75
|
mp3an2i |
|- ( ( A e. RR /\ B e. RR ) -> ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A ) |
| 77 |
|
simpr |
|- ( ( A e. RR /\ B e. RR ) -> B e. RR ) |
| 78 |
|
fvpr2g |
|- ( ( 2 e. _V /\ B e. RR /\ 1 =/= 2 ) -> ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) |
| 79 |
10 77 74 78
|
mp3an2i |
|- ( ( A e. RR /\ B e. RR ) -> ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) |
| 80 |
76 79
|
jca |
|- ( ( A e. RR /\ B e. RR ) -> ( ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A /\ ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) |
| 81 |
80
|
ad2antrr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A /\ ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) |
| 82 |
|
fveq1 |
|- ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( Z ` 1 ) = ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) ) |
| 83 |
82
|
eqeq1d |
|- ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( ( Z ` 1 ) = A <-> ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A ) ) |
| 84 |
|
fveq1 |
|- ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( Z ` 2 ) = ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) ) |
| 85 |
84
|
eqeq1d |
|- ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( ( Z ` 2 ) = B <-> ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) |
| 86 |
83 85
|
anbi12d |
|- ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) <-> ( ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A /\ ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) ) |
| 87 |
86
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) <-> ( ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A /\ ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) ) |
| 88 |
81 87
|
mpbird |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) ) |
| 89 |
88
|
orcd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) |
| 90 |
72 89
|
jca |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) |
| 91 |
90
|
ex |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) ) |
| 92 |
1 2
|
prelrrx2 |
|- ( ( X e. RR /\ Y e. RR ) -> { <. 1 , X >. , <. 2 , Y >. } e. P ) |
| 93 |
92
|
ad2antlr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> { <. 1 , X >. , <. 2 , Y >. } e. P ) |
| 94 |
|
eleq1 |
|- ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( Z e. P <-> { <. 1 , X >. , <. 2 , Y >. } e. P ) ) |
| 95 |
94
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( Z e. P <-> { <. 1 , X >. , <. 2 , Y >. } e. P ) ) |
| 96 |
93 95
|
mpbird |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> Z e. P ) |
| 97 |
|
simpl |
|- ( ( X e. RR /\ Y e. RR ) -> X e. RR ) |
| 98 |
8
|
a1i |
|- ( ( X e. RR /\ Y e. RR ) -> 1 =/= 2 ) |
| 99 |
|
fvpr1g |
|- ( ( 1 e. _V /\ X e. RR /\ 1 =/= 2 ) -> ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X ) |
| 100 |
9 97 98 99
|
mp3an2i |
|- ( ( X e. RR /\ Y e. RR ) -> ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X ) |
| 101 |
|
simpr |
|- ( ( X e. RR /\ Y e. RR ) -> Y e. RR ) |
| 102 |
|
fvpr2g |
|- ( ( 2 e. _V /\ Y e. RR /\ 1 =/= 2 ) -> ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) |
| 103 |
10 101 98 102
|
mp3an2i |
|- ( ( X e. RR /\ Y e. RR ) -> ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) |
| 104 |
100 103
|
jca |
|- ( ( X e. RR /\ Y e. RR ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X /\ ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) |
| 105 |
104
|
ad2antlr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X /\ ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) |
| 106 |
|
fveq1 |
|- ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( Z ` 1 ) = ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) ) |
| 107 |
106
|
eqeq1d |
|- ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( ( Z ` 1 ) = X <-> ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X ) ) |
| 108 |
|
fveq1 |
|- ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( Z ` 2 ) = ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) ) |
| 109 |
108
|
eqeq1d |
|- ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( ( Z ` 2 ) = Y <-> ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) |
| 110 |
107 109
|
anbi12d |
|- ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) <-> ( ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X /\ ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) ) |
| 111 |
110
|
adantl |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) <-> ( ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X /\ ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) ) |
| 112 |
105 111
|
mpbird |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) |
| 113 |
112
|
olcd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) |
| 114 |
96 113
|
jca |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) |
| 115 |
114
|
ex |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) ) |
| 116 |
91 115
|
jaod |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) ) |
| 117 |
67 116
|
syl5 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) ) |
| 118 |
66 117
|
impbid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) <-> Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } ) ) |