| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prelrrx2.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | prelrrx2.b |  |-  P = ( RR ^m I ) | 
						
							| 3 | 2 | eleq2i |  |-  ( Z e. P <-> Z e. ( RR ^m I ) ) | 
						
							| 4 | 1 | oveq2i |  |-  ( RR ^m I ) = ( RR ^m { 1 , 2 } ) | 
						
							| 5 | 4 | eleq2i |  |-  ( Z e. ( RR ^m I ) <-> Z e. ( RR ^m { 1 , 2 } ) ) | 
						
							| 6 | 3 5 | bitri |  |-  ( Z e. P <-> Z e. ( RR ^m { 1 , 2 } ) ) | 
						
							| 7 |  | elmapi |  |-  ( Z e. ( RR ^m { 1 , 2 } ) -> Z : { 1 , 2 } --> RR ) | 
						
							| 8 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 9 |  | 1ex |  |-  1 e. _V | 
						
							| 10 |  | 2ex |  |-  2 e. _V | 
						
							| 11 | 9 10 | fprb |  |-  ( 1 =/= 2 -> ( Z : { 1 , 2 } --> RR <-> E. x e. RR E. y e. RR Z = { <. 1 , x >. , <. 2 , y >. } ) ) | 
						
							| 12 | 8 11 | ax-mp |  |-  ( Z : { 1 , 2 } --> RR <-> E. x e. RR E. y e. RR Z = { <. 1 , x >. , <. 2 , y >. } ) | 
						
							| 13 |  | fveq1 |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( Z ` 1 ) = ( { <. 1 , x >. , <. 2 , y >. } ` 1 ) ) | 
						
							| 14 |  | vex |  |-  x e. _V | 
						
							| 15 | 9 14 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , x >. , <. 2 , y >. } ` 1 ) = x ) | 
						
							| 16 | 8 15 | ax-mp |  |-  ( { <. 1 , x >. , <. 2 , y >. } ` 1 ) = x | 
						
							| 17 | 13 16 | eqtrdi |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( Z ` 1 ) = x ) | 
						
							| 18 | 17 | eqeq1d |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( Z ` 1 ) = A <-> x = A ) ) | 
						
							| 19 |  | fveq1 |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( Z ` 2 ) = ( { <. 1 , x >. , <. 2 , y >. } ` 2 ) ) | 
						
							| 20 |  | vex |  |-  y e. _V | 
						
							| 21 | 10 20 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , x >. , <. 2 , y >. } ` 2 ) = y ) | 
						
							| 22 | 8 21 | ax-mp |  |-  ( { <. 1 , x >. , <. 2 , y >. } ` 2 ) = y | 
						
							| 23 | 19 22 | eqtrdi |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( Z ` 2 ) = y ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( Z ` 2 ) = B <-> y = B ) ) | 
						
							| 25 | 18 24 | anbi12d |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) <-> ( x = A /\ y = B ) ) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) <-> ( x = A /\ y = B ) ) ) | 
						
							| 27 |  | opeq2 |  |-  ( x = A -> <. 1 , x >. = <. 1 , A >. ) | 
						
							| 28 | 27 | adantr |  |-  ( ( x = A /\ y = B ) -> <. 1 , x >. = <. 1 , A >. ) | 
						
							| 29 |  | opeq2 |  |-  ( y = B -> <. 2 , y >. = <. 2 , B >. ) | 
						
							| 30 | 29 | adantl |  |-  ( ( x = A /\ y = B ) -> <. 2 , y >. = <. 2 , B >. ) | 
						
							| 31 | 28 30 | preq12d |  |-  ( ( x = A /\ y = B ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , A >. , <. 2 , B >. } ) | 
						
							| 32 | 31 | eqeq2d |  |-  ( ( x = A /\ y = B ) -> ( Z = { <. 1 , x >. , <. 2 , y >. } <-> Z = { <. 1 , A >. , <. 2 , B >. } ) ) | 
						
							| 33 | 32 | biimpcd |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( x = A /\ y = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( x = A /\ y = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) | 
						
							| 35 | 26 34 | sylbid |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) | 
						
							| 36 | 35 | ex |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) -> ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) | 
						
							| 37 | 36 | rexlimdvva |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( E. x e. RR E. y e. RR Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) | 
						
							| 38 | 12 37 | biimtrid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z : { 1 , 2 } --> RR -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) | 
						
							| 39 | 7 38 | syl5 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. ( RR ^m { 1 , 2 } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) | 
						
							| 40 | 6 39 | biimtrid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. P -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) -> Z = { <. 1 , A >. , <. 2 , B >. } ) ) | 
						
							| 42 | 17 | eqeq1d |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( Z ` 1 ) = X <-> x = X ) ) | 
						
							| 43 | 23 | eqeq1d |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( Z ` 2 ) = Y <-> y = Y ) ) | 
						
							| 44 | 42 43 | anbi12d |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) <-> ( x = X /\ y = Y ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) <-> ( x = X /\ y = Y ) ) ) | 
						
							| 46 |  | opeq2 |  |-  ( x = X -> <. 1 , x >. = <. 1 , X >. ) | 
						
							| 47 | 46 | adantr |  |-  ( ( x = X /\ y = Y ) -> <. 1 , x >. = <. 1 , X >. ) | 
						
							| 48 |  | opeq2 |  |-  ( y = Y -> <. 2 , y >. = <. 2 , Y >. ) | 
						
							| 49 | 48 | adantl |  |-  ( ( x = X /\ y = Y ) -> <. 2 , y >. = <. 2 , Y >. ) | 
						
							| 50 | 47 49 | preq12d |  |-  ( ( x = X /\ y = Y ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , X >. , <. 2 , Y >. } ) | 
						
							| 51 | 50 | eqeq2d |  |-  ( ( x = X /\ y = Y ) -> ( Z = { <. 1 , x >. , <. 2 , y >. } <-> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) | 
						
							| 52 | 51 | biimpcd |  |-  ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( x = X /\ y = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( x = X /\ y = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) | 
						
							| 54 | 45 53 | sylbid |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) /\ Z = { <. 1 , x >. , <. 2 , y >. } ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) | 
						
							| 55 | 54 | ex |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ ( x e. RR /\ y e. RR ) ) -> ( Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) | 
						
							| 56 | 55 | rexlimdvva |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( E. x e. RR E. y e. RR Z = { <. 1 , x >. , <. 2 , y >. } -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) | 
						
							| 57 | 12 56 | biimtrid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z : { 1 , 2 } --> RR -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) | 
						
							| 58 | 7 57 | syl5 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. ( RR ^m { 1 , 2 } ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) | 
						
							| 59 | 6 58 | biimtrid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. P -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) | 
						
							| 60 | 59 | imp |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) -> Z = { <. 1 , X >. , <. 2 , Y >. } ) ) | 
						
							| 61 | 41 60 | orim12d |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) -> ( ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) -> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) | 
						
							| 62 | 61 | imp |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) -> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) | 
						
							| 63 |  | elprg |  |-  ( Z e. P -> ( Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } <-> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) | 
						
							| 64 | 63 | ad2antlr |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) -> ( Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } <-> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) ) | 
						
							| 65 | 62 64 | mpbird |  |-  ( ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z e. P ) /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) -> Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } ) | 
						
							| 66 | 65 | expl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) -> Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } ) ) | 
						
							| 67 |  | elpri |  |-  ( Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } -> ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) ) | 
						
							| 68 | 1 2 | prelrrx2 |  |-  ( ( A e. RR /\ B e. RR ) -> { <. 1 , A >. , <. 2 , B >. } e. P ) | 
						
							| 69 | 68 | ad2antrr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> { <. 1 , A >. , <. 2 , B >. } e. P ) | 
						
							| 70 |  | eleq1 |  |-  ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( Z e. P <-> { <. 1 , A >. , <. 2 , B >. } e. P ) ) | 
						
							| 71 | 70 | adantl |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( Z e. P <-> { <. 1 , A >. , <. 2 , B >. } e. P ) ) | 
						
							| 72 | 69 71 | mpbird |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> Z e. P ) | 
						
							| 73 |  | simpl |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR ) | 
						
							| 74 | 8 | a1i |  |-  ( ( A e. RR /\ B e. RR ) -> 1 =/= 2 ) | 
						
							| 75 |  | fvpr1g |  |-  ( ( 1 e. _V /\ A e. RR /\ 1 =/= 2 ) -> ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A ) | 
						
							| 76 | 9 73 74 75 | mp3an2i |  |-  ( ( A e. RR /\ B e. RR ) -> ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A ) | 
						
							| 77 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 78 |  | fvpr2g |  |-  ( ( 2 e. _V /\ B e. RR /\ 1 =/= 2 ) -> ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) | 
						
							| 79 | 10 77 74 78 | mp3an2i |  |-  ( ( A e. RR /\ B e. RR ) -> ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) | 
						
							| 80 | 76 79 | jca |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A /\ ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) | 
						
							| 81 | 80 | ad2antrr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A /\ ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) | 
						
							| 82 |  | fveq1 |  |-  ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( Z ` 1 ) = ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) ) | 
						
							| 83 | 82 | eqeq1d |  |-  ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( ( Z ` 1 ) = A <-> ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A ) ) | 
						
							| 84 |  | fveq1 |  |-  ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( Z ` 2 ) = ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) ) | 
						
							| 85 | 84 | eqeq1d |  |-  ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( ( Z ` 2 ) = B <-> ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) | 
						
							| 86 | 83 85 | anbi12d |  |-  ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) <-> ( ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A /\ ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) ) | 
						
							| 87 | 86 | adantl |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) <-> ( ( { <. 1 , A >. , <. 2 , B >. } ` 1 ) = A /\ ( { <. 1 , A >. , <. 2 , B >. } ` 2 ) = B ) ) ) | 
						
							| 88 | 81 87 | mpbird |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) ) | 
						
							| 89 | 88 | orcd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) | 
						
							| 90 | 72 89 | jca |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , A >. , <. 2 , B >. } ) -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) | 
						
							| 91 | 90 | ex |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z = { <. 1 , A >. , <. 2 , B >. } -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) ) | 
						
							| 92 | 1 2 | prelrrx2 |  |-  ( ( X e. RR /\ Y e. RR ) -> { <. 1 , X >. , <. 2 , Y >. } e. P ) | 
						
							| 93 | 92 | ad2antlr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> { <. 1 , X >. , <. 2 , Y >. } e. P ) | 
						
							| 94 |  | eleq1 |  |-  ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( Z e. P <-> { <. 1 , X >. , <. 2 , Y >. } e. P ) ) | 
						
							| 95 | 94 | adantl |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( Z e. P <-> { <. 1 , X >. , <. 2 , Y >. } e. P ) ) | 
						
							| 96 | 93 95 | mpbird |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> Z e. P ) | 
						
							| 97 |  | simpl |  |-  ( ( X e. RR /\ Y e. RR ) -> X e. RR ) | 
						
							| 98 | 8 | a1i |  |-  ( ( X e. RR /\ Y e. RR ) -> 1 =/= 2 ) | 
						
							| 99 |  | fvpr1g |  |-  ( ( 1 e. _V /\ X e. RR /\ 1 =/= 2 ) -> ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X ) | 
						
							| 100 | 9 97 98 99 | mp3an2i |  |-  ( ( X e. RR /\ Y e. RR ) -> ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X ) | 
						
							| 101 |  | simpr |  |-  ( ( X e. RR /\ Y e. RR ) -> Y e. RR ) | 
						
							| 102 |  | fvpr2g |  |-  ( ( 2 e. _V /\ Y e. RR /\ 1 =/= 2 ) -> ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) | 
						
							| 103 | 10 101 98 102 | mp3an2i |  |-  ( ( X e. RR /\ Y e. RR ) -> ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) | 
						
							| 104 | 100 103 | jca |  |-  ( ( X e. RR /\ Y e. RR ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X /\ ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) | 
						
							| 105 | 104 | ad2antlr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X /\ ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) | 
						
							| 106 |  | fveq1 |  |-  ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( Z ` 1 ) = ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) ) | 
						
							| 107 | 106 | eqeq1d |  |-  ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( ( Z ` 1 ) = X <-> ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X ) ) | 
						
							| 108 |  | fveq1 |  |-  ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( Z ` 2 ) = ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) ) | 
						
							| 109 | 108 | eqeq1d |  |-  ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( ( Z ` 2 ) = Y <-> ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) | 
						
							| 110 | 107 109 | anbi12d |  |-  ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) <-> ( ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X /\ ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) ) | 
						
							| 111 | 110 | adantl |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) <-> ( ( { <. 1 , X >. , <. 2 , Y >. } ` 1 ) = X /\ ( { <. 1 , X >. , <. 2 , Y >. } ` 2 ) = Y ) ) ) | 
						
							| 112 | 105 111 | mpbird |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) | 
						
							| 113 | 112 | olcd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) | 
						
							| 114 | 96 113 | jca |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) /\ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) | 
						
							| 115 | 114 | ex |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z = { <. 1 , X >. , <. 2 , Y >. } -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) ) | 
						
							| 116 | 91 115 | jaod |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Z = { <. 1 , A >. , <. 2 , B >. } \/ Z = { <. 1 , X >. , <. 2 , Y >. } ) -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) ) | 
						
							| 117 | 67 116 | syl5 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } -> ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) ) ) | 
						
							| 118 | 66 117 | impbid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ Y e. RR ) ) -> ( ( Z e. P /\ ( ( ( Z ` 1 ) = A /\ ( Z ` 2 ) = B ) \/ ( ( Z ` 1 ) = X /\ ( Z ` 2 ) = Y ) ) ) <-> Z e. { { <. 1 , A >. , <. 2 , B >. } , { <. 1 , X >. , <. 2 , Y >. } } ) ) |