| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprb.1 |
|- A e. _V |
| 2 |
|
fprb.2 |
|- B e. _V |
| 3 |
1
|
prid1 |
|- A e. { A , B } |
| 4 |
|
ffvelcdm |
|- ( ( F : { A , B } --> R /\ A e. { A , B } ) -> ( F ` A ) e. R ) |
| 5 |
3 4
|
mpan2 |
|- ( F : { A , B } --> R -> ( F ` A ) e. R ) |
| 6 |
5
|
adantr |
|- ( ( F : { A , B } --> R /\ A =/= B ) -> ( F ` A ) e. R ) |
| 7 |
2
|
prid2 |
|- B e. { A , B } |
| 8 |
|
ffvelcdm |
|- ( ( F : { A , B } --> R /\ B e. { A , B } ) -> ( F ` B ) e. R ) |
| 9 |
7 8
|
mpan2 |
|- ( F : { A , B } --> R -> ( F ` B ) e. R ) |
| 10 |
9
|
adantr |
|- ( ( F : { A , B } --> R /\ A =/= B ) -> ( F ` B ) e. R ) |
| 11 |
|
fvex |
|- ( F ` A ) e. _V |
| 12 |
1 11
|
fvpr1 |
|- ( A =/= B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) = ( F ` A ) ) |
| 13 |
|
fvex |
|- ( F ` B ) e. _V |
| 14 |
2 13
|
fvpr2 |
|- ( A =/= B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) = ( F ` B ) ) |
| 15 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
| 16 |
|
fveq2 |
|- ( x = A -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) ) |
| 17 |
15 16
|
eqeq12d |
|- ( x = A -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) ) ) |
| 18 |
|
eqcom |
|- ( ( F ` A ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) <-> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) = ( F ` A ) ) |
| 19 |
17 18
|
bitrdi |
|- ( x = A -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) = ( F ` A ) ) ) |
| 20 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
| 21 |
|
fveq2 |
|- ( x = B -> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) ) |
| 22 |
20 21
|
eqeq12d |
|- ( x = B -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) ) ) |
| 23 |
|
eqcom |
|- ( ( F ` B ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) <-> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) = ( F ` B ) ) |
| 24 |
22 23
|
bitrdi |
|- ( x = B -> ( ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) = ( F ` B ) ) ) |
| 25 |
1 2 19 24
|
ralpr |
|- ( A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) <-> ( ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` A ) = ( F ` A ) /\ ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` B ) = ( F ` B ) ) ) |
| 26 |
12 14 25
|
sylanbrc |
|- ( A =/= B -> A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) ) |
| 27 |
26
|
adantl |
|- ( ( F : { A , B } --> R /\ A =/= B ) -> A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) ) |
| 28 |
|
ffn |
|- ( F : { A , B } --> R -> F Fn { A , B } ) |
| 29 |
1 2 11 13
|
fpr |
|- ( A =/= B -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } : { A , B } --> { ( F ` A ) , ( F ` B ) } ) |
| 30 |
29
|
ffnd |
|- ( A =/= B -> { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } Fn { A , B } ) |
| 31 |
|
eqfnfv |
|- ( ( F Fn { A , B } /\ { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } Fn { A , B } ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) ) ) |
| 32 |
28 30 31
|
syl2an |
|- ( ( F : { A , B } --> R /\ A =/= B ) -> ( F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } <-> A. x e. { A , B } ( F ` x ) = ( { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ` x ) ) ) |
| 33 |
27 32
|
mpbird |
|- ( ( F : { A , B } --> R /\ A =/= B ) -> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
| 34 |
|
opeq2 |
|- ( x = ( F ` A ) -> <. A , x >. = <. A , ( F ` A ) >. ) |
| 35 |
34
|
preq1d |
|- ( x = ( F ` A ) -> { <. A , x >. , <. B , y >. } = { <. A , ( F ` A ) >. , <. B , y >. } ) |
| 36 |
35
|
eqeq2d |
|- ( x = ( F ` A ) -> ( F = { <. A , x >. , <. B , y >. } <-> F = { <. A , ( F ` A ) >. , <. B , y >. } ) ) |
| 37 |
|
opeq2 |
|- ( y = ( F ` B ) -> <. B , y >. = <. B , ( F ` B ) >. ) |
| 38 |
37
|
preq2d |
|- ( y = ( F ` B ) -> { <. A , ( F ` A ) >. , <. B , y >. } = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) |
| 39 |
38
|
eqeq2d |
|- ( y = ( F ` B ) -> ( F = { <. A , ( F ` A ) >. , <. B , y >. } <-> F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) ) |
| 40 |
36 39
|
rspc2ev |
|- ( ( ( F ` A ) e. R /\ ( F ` B ) e. R /\ F = { <. A , ( F ` A ) >. , <. B , ( F ` B ) >. } ) -> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) |
| 41 |
6 10 33 40
|
syl3anc |
|- ( ( F : { A , B } --> R /\ A =/= B ) -> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) |
| 42 |
41
|
expcom |
|- ( A =/= B -> ( F : { A , B } --> R -> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) ) |
| 43 |
|
vex |
|- x e. _V |
| 44 |
|
vex |
|- y e. _V |
| 45 |
1 2 43 44
|
fpr |
|- ( A =/= B -> { <. A , x >. , <. B , y >. } : { A , B } --> { x , y } ) |
| 46 |
|
prssi |
|- ( ( x e. R /\ y e. R ) -> { x , y } C_ R ) |
| 47 |
|
fss |
|- ( ( { <. A , x >. , <. B , y >. } : { A , B } --> { x , y } /\ { x , y } C_ R ) -> { <. A , x >. , <. B , y >. } : { A , B } --> R ) |
| 48 |
45 46 47
|
syl2an |
|- ( ( A =/= B /\ ( x e. R /\ y e. R ) ) -> { <. A , x >. , <. B , y >. } : { A , B } --> R ) |
| 49 |
48
|
ex |
|- ( A =/= B -> ( ( x e. R /\ y e. R ) -> { <. A , x >. , <. B , y >. } : { A , B } --> R ) ) |
| 50 |
|
feq1 |
|- ( F = { <. A , x >. , <. B , y >. } -> ( F : { A , B } --> R <-> { <. A , x >. , <. B , y >. } : { A , B } --> R ) ) |
| 51 |
50
|
biimprcd |
|- ( { <. A , x >. , <. B , y >. } : { A , B } --> R -> ( F = { <. A , x >. , <. B , y >. } -> F : { A , B } --> R ) ) |
| 52 |
49 51
|
syl6 |
|- ( A =/= B -> ( ( x e. R /\ y e. R ) -> ( F = { <. A , x >. , <. B , y >. } -> F : { A , B } --> R ) ) ) |
| 53 |
52
|
rexlimdvv |
|- ( A =/= B -> ( E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } -> F : { A , B } --> R ) ) |
| 54 |
42 53
|
impbid |
|- ( A =/= B -> ( F : { A , B } --> R <-> E. x e. R E. y e. R F = { <. A , x >. , <. B , y >. } ) ) |