| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2plord.o |  |-  O = { <. x , y >. | ( ( x e. R /\ y e. R ) /\ ( ( x ` 1 ) < ( y ` 1 ) \/ ( ( x ` 1 ) = ( y ` 1 ) /\ ( x ` 2 ) < ( y ` 2 ) ) ) ) } | 
						
							| 2 |  | rrx2plord2.r |  |-  R = ( RR ^m { 1 , 2 } ) | 
						
							| 3 |  | rrx2plordisom.f |  |-  F = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) | 
						
							| 4 |  | rrx2plordisom.t |  |-  T = { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } | 
						
							| 5 |  | eqid |  |-  ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) | 
						
							| 6 | 2 5 | rrx2xpref1o |  |-  ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) : ( RR X. RR ) -1-1-onto-> R | 
						
							| 7 |  | elxpi |  |-  ( a e. ( RR X. RR ) -> E. c E. d ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) ) | 
						
							| 8 |  | elxpi |  |-  ( b e. ( RR X. RR ) -> E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) | 
						
							| 9 |  | df-br |  |-  ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> <. a , b >. e. { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } ) | 
						
							| 10 |  | opelxpi |  |-  ( ( c e. RR /\ d e. RR ) -> <. c , d >. e. ( RR X. RR ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> <. c , d >. e. ( RR X. RR ) ) | 
						
							| 12 |  | eleq1 |  |-  ( a = <. c , d >. -> ( a e. ( RR X. RR ) <-> <. c , d >. e. ( RR X. RR ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( a e. ( RR X. RR ) <-> <. c , d >. e. ( RR X. RR ) ) ) | 
						
							| 14 | 11 13 | mpbird |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> a e. ( RR X. RR ) ) | 
						
							| 15 |  | opelxpi |  |-  ( ( e e. RR /\ f e. RR ) -> <. e , f >. e. ( RR X. RR ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> <. e , f >. e. ( RR X. RR ) ) | 
						
							| 17 |  | eleq1 |  |-  ( b = <. e , f >. -> ( b e. ( RR X. RR ) <-> <. e , f >. e. ( RR X. RR ) ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( b e. ( RR X. RR ) <-> <. e , f >. e. ( RR X. RR ) ) ) | 
						
							| 19 | 16 18 | mpbird |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> b e. ( RR X. RR ) ) | 
						
							| 20 |  | fveq2 |  |-  ( x = a -> ( 1st ` x ) = ( 1st ` a ) ) | 
						
							| 21 |  | fveq2 |  |-  ( y = b -> ( 1st ` y ) = ( 1st ` b ) ) | 
						
							| 22 | 20 21 | breqan12d |  |-  ( ( x = a /\ y = b ) -> ( ( 1st ` x ) < ( 1st ` y ) <-> ( 1st ` a ) < ( 1st ` b ) ) ) | 
						
							| 23 | 20 21 | eqeqan12d |  |-  ( ( x = a /\ y = b ) -> ( ( 1st ` x ) = ( 1st ` y ) <-> ( 1st ` a ) = ( 1st ` b ) ) ) | 
						
							| 24 |  | fveq2 |  |-  ( x = a -> ( 2nd ` x ) = ( 2nd ` a ) ) | 
						
							| 25 |  | fveq2 |  |-  ( y = b -> ( 2nd ` y ) = ( 2nd ` b ) ) | 
						
							| 26 | 24 25 | breqan12d |  |-  ( ( x = a /\ y = b ) -> ( ( 2nd ` x ) < ( 2nd ` y ) <-> ( 2nd ` a ) < ( 2nd ` b ) ) ) | 
						
							| 27 | 23 26 | anbi12d |  |-  ( ( x = a /\ y = b ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) <-> ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) | 
						
							| 28 | 22 27 | orbi12d |  |-  ( ( x = a /\ y = b ) -> ( ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) <-> ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) ) | 
						
							| 29 | 28 | opelopab2a |  |-  ( ( a e. ( RR X. RR ) /\ b e. ( RR X. RR ) ) -> ( <. a , b >. e. { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } <-> ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) ) | 
						
							| 30 | 14 19 29 | syl2an |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( <. a , b >. e. { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } <-> ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) ) | 
						
							| 31 | 9 30 | bitrid |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) ) | 
						
							| 32 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 33 |  | 1ex |  |-  1 e. _V | 
						
							| 34 |  | vex |  |-  c e. _V | 
						
							| 35 | 33 34 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = c ) | 
						
							| 36 | 32 35 | mp1i |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = c ) | 
						
							| 37 |  | vex |  |-  e e. _V | 
						
							| 38 | 33 37 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) = e ) | 
						
							| 39 | 32 38 | mp1i |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) = e ) | 
						
							| 40 | 36 39 | breq12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) <-> c < e ) ) | 
						
							| 41 | 36 39 | eqeq12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) <-> c = e ) ) | 
						
							| 42 |  | 2ex |  |-  2 e. _V | 
						
							| 43 |  | vex |  |-  d e. _V | 
						
							| 44 | 42 43 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) = d ) | 
						
							| 45 | 32 44 | mp1i |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) = d ) | 
						
							| 46 |  | vex |  |-  f e. _V | 
						
							| 47 | 42 46 | fvpr2 |  |-  ( 1 =/= 2 -> ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) = f ) | 
						
							| 48 | 32 47 | mp1i |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) = f ) | 
						
							| 49 | 45 48 | breq12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) <-> d < f ) ) | 
						
							| 50 | 41 49 | anbi12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) /\ ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) ) <-> ( c = e /\ d < f ) ) ) | 
						
							| 51 | 40 50 | orbi12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) \/ ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) /\ ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) ) ) <-> ( c < e \/ ( c = e /\ d < f ) ) ) ) | 
						
							| 52 |  | eqid |  |-  { 1 , 2 } = { 1 , 2 } | 
						
							| 53 | 52 2 | prelrrx2 |  |-  ( ( c e. RR /\ d e. RR ) -> { <. 1 , c >. , <. 2 , d >. } e. R ) | 
						
							| 54 | 53 | adantl |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> { <. 1 , c >. , <. 2 , d >. } e. R ) | 
						
							| 55 | 52 2 | prelrrx2 |  |-  ( ( e e. RR /\ f e. RR ) -> { <. 1 , e >. , <. 2 , f >. } e. R ) | 
						
							| 56 | 55 | adantl |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> { <. 1 , e >. , <. 2 , f >. } e. R ) | 
						
							| 57 | 1 | rrx2plord |  |-  ( ( { <. 1 , c >. , <. 2 , d >. } e. R /\ { <. 1 , e >. , <. 2 , f >. } e. R ) -> ( { <. 1 , c >. , <. 2 , d >. } O { <. 1 , e >. , <. 2 , f >. } <-> ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) \/ ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) /\ ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) ) ) ) ) | 
						
							| 58 | 54 56 57 | syl2an |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , c >. , <. 2 , d >. } O { <. 1 , e >. , <. 2 , f >. } <-> ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) \/ ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) /\ ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) ) ) ) ) | 
						
							| 59 | 34 43 | op1std |  |-  ( a = <. c , d >. -> ( 1st ` a ) = c ) | 
						
							| 60 | 59 | adantr |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( 1st ` a ) = c ) | 
						
							| 61 | 37 46 | op1std |  |-  ( b = <. e , f >. -> ( 1st ` b ) = e ) | 
						
							| 62 | 61 | adantr |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( 1st ` b ) = e ) | 
						
							| 63 | 60 62 | breqan12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( 1st ` a ) < ( 1st ` b ) <-> c < e ) ) | 
						
							| 64 | 60 62 | eqeqan12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( 1st ` a ) = ( 1st ` b ) <-> c = e ) ) | 
						
							| 65 | 34 43 | op2ndd |  |-  ( a = <. c , d >. -> ( 2nd ` a ) = d ) | 
						
							| 66 | 65 | adantr |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( 2nd ` a ) = d ) | 
						
							| 67 | 37 46 | op2ndd |  |-  ( b = <. e , f >. -> ( 2nd ` b ) = f ) | 
						
							| 68 | 67 | adantr |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( 2nd ` b ) = f ) | 
						
							| 69 | 66 68 | breqan12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( 2nd ` a ) < ( 2nd ` b ) <-> d < f ) ) | 
						
							| 70 | 64 69 | anbi12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) <-> ( c = e /\ d < f ) ) ) | 
						
							| 71 | 63 70 | orbi12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) <-> ( c < e \/ ( c = e /\ d < f ) ) ) ) | 
						
							| 72 | 51 58 71 | 3bitr4rd |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) <-> { <. 1 , c >. , <. 2 , d >. } O { <. 1 , e >. , <. 2 , f >. } ) ) | 
						
							| 73 |  | fveq2 |  |-  ( a = <. c , d >. -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` <. c , d >. ) ) | 
						
							| 74 |  | df-ov |  |-  ( c ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) d ) = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` <. c , d >. ) | 
						
							| 75 | 73 74 | eqtr4di |  |-  ( a = <. c , d >. -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) = ( c ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) d ) ) | 
						
							| 76 |  | eqidd |  |-  ( ( c e. RR /\ d e. RR ) -> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ) | 
						
							| 77 |  | opeq2 |  |-  ( x = c -> <. 1 , x >. = <. 1 , c >. ) | 
						
							| 78 | 77 | adantr |  |-  ( ( x = c /\ y = d ) -> <. 1 , x >. = <. 1 , c >. ) | 
						
							| 79 |  | opeq2 |  |-  ( y = d -> <. 2 , y >. = <. 2 , d >. ) | 
						
							| 80 | 79 | adantl |  |-  ( ( x = c /\ y = d ) -> <. 2 , y >. = <. 2 , d >. ) | 
						
							| 81 | 78 80 | preq12d |  |-  ( ( x = c /\ y = d ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , c >. , <. 2 , d >. } ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ( c e. RR /\ d e. RR ) /\ ( x = c /\ y = d ) ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , c >. , <. 2 , d >. } ) | 
						
							| 83 |  | simpl |  |-  ( ( c e. RR /\ d e. RR ) -> c e. RR ) | 
						
							| 84 |  | simpr |  |-  ( ( c e. RR /\ d e. RR ) -> d e. RR ) | 
						
							| 85 |  | prex |  |-  { <. 1 , c >. , <. 2 , d >. } e. _V | 
						
							| 86 | 85 | a1i |  |-  ( ( c e. RR /\ d e. RR ) -> { <. 1 , c >. , <. 2 , d >. } e. _V ) | 
						
							| 87 | 76 82 83 84 86 | ovmpod |  |-  ( ( c e. RR /\ d e. RR ) -> ( c ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) d ) = { <. 1 , c >. , <. 2 , d >. } ) | 
						
							| 88 | 75 87 | sylan9eq |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) = { <. 1 , c >. , <. 2 , d >. } ) | 
						
							| 89 | 88 | eqcomd |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> { <. 1 , c >. , <. 2 , d >. } = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) ) | 
						
							| 90 |  | fveq2 |  |-  ( b = <. e , f >. -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` <. e , f >. ) ) | 
						
							| 91 |  | df-ov |  |-  ( e ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) f ) = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` <. e , f >. ) | 
						
							| 92 | 90 91 | eqtr4di |  |-  ( b = <. e , f >. -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) = ( e ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) f ) ) | 
						
							| 93 |  | eqidd |  |-  ( ( e e. RR /\ f e. RR ) -> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ) | 
						
							| 94 |  | opeq2 |  |-  ( x = e -> <. 1 , x >. = <. 1 , e >. ) | 
						
							| 95 | 94 | adantr |  |-  ( ( x = e /\ y = f ) -> <. 1 , x >. = <. 1 , e >. ) | 
						
							| 96 |  | opeq2 |  |-  ( y = f -> <. 2 , y >. = <. 2 , f >. ) | 
						
							| 97 | 96 | adantl |  |-  ( ( x = e /\ y = f ) -> <. 2 , y >. = <. 2 , f >. ) | 
						
							| 98 | 95 97 | preq12d |  |-  ( ( x = e /\ y = f ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , e >. , <. 2 , f >. } ) | 
						
							| 99 | 98 | adantl |  |-  ( ( ( e e. RR /\ f e. RR ) /\ ( x = e /\ y = f ) ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , e >. , <. 2 , f >. } ) | 
						
							| 100 |  | simpl |  |-  ( ( e e. RR /\ f e. RR ) -> e e. RR ) | 
						
							| 101 |  | simpr |  |-  ( ( e e. RR /\ f e. RR ) -> f e. RR ) | 
						
							| 102 |  | prex |  |-  { <. 1 , e >. , <. 2 , f >. } e. _V | 
						
							| 103 | 102 | a1i |  |-  ( ( e e. RR /\ f e. RR ) -> { <. 1 , e >. , <. 2 , f >. } e. _V ) | 
						
							| 104 | 93 99 100 101 103 | ovmpod |  |-  ( ( e e. RR /\ f e. RR ) -> ( e ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) f ) = { <. 1 , e >. , <. 2 , f >. } ) | 
						
							| 105 | 92 104 | sylan9eq |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) = { <. 1 , e >. , <. 2 , f >. } ) | 
						
							| 106 | 105 | eqcomd |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> { <. 1 , e >. , <. 2 , f >. } = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) | 
						
							| 107 | 89 106 | breqan12d |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , c >. , <. 2 , d >. } O { <. 1 , e >. , <. 2 , f >. } <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) | 
						
							| 108 | 31 72 107 | 3bitrd |  |-  ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) | 
						
							| 109 | 108 | expcom |  |-  ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) | 
						
							| 110 | 109 | exlimivv |  |-  ( E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) | 
						
							| 111 | 110 | com12 |  |-  ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) | 
						
							| 112 | 111 | exlimivv |  |-  ( E. c E. d ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) | 
						
							| 113 | 112 | imp |  |-  ( ( E. c E. d ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) | 
						
							| 114 | 7 8 113 | syl2an |  |-  ( ( a e. ( RR X. RR ) /\ b e. ( RR X. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) | 
						
							| 115 | 114 | rgen2 |  |-  A. a e. ( RR X. RR ) A. b e. ( RR X. RR ) ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) | 
						
							| 116 |  | df-isom |  |-  ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } , O ( ( RR X. RR ) , R ) <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) : ( RR X. RR ) -1-1-onto-> R /\ A. a e. ( RR X. RR ) A. b e. ( RR X. RR ) ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) | 
						
							| 117 | 6 115 116 | mpbir2an |  |-  ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } , O ( ( RR X. RR ) , R ) | 
						
							| 118 |  | isoeq2 |  |-  ( T = { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } , O ( ( RR X. RR ) , R ) ) ) | 
						
							| 119 | 4 118 | ax-mp |  |-  ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } , O ( ( RR X. RR ) , R ) ) | 
						
							| 120 | 117 119 | mpbir |  |-  ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) | 
						
							| 121 |  | isoeq1 |  |-  ( F = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) -> ( F Isom T , O ( ( RR X. RR ) , R ) <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) ) ) | 
						
							| 122 | 3 121 | ax-mp |  |-  ( F Isom T , O ( ( RR X. RR ) , R ) <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) ) | 
						
							| 123 | 120 122 | mpbir |  |-  F Isom T , O ( ( RR X. RR ) , R ) |