Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2plord.o |
|- O = { <. x , y >. | ( ( x e. R /\ y e. R ) /\ ( ( x ` 1 ) < ( y ` 1 ) \/ ( ( x ` 1 ) = ( y ` 1 ) /\ ( x ` 2 ) < ( y ` 2 ) ) ) ) } |
2 |
|
rrx2plord2.r |
|- R = ( RR ^m { 1 , 2 } ) |
3 |
|
rrx2plordisom.f |
|- F = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) |
4 |
|
rrx2plordisom.t |
|- T = { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } |
5 |
|
eqid |
|- ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) |
6 |
2 5
|
rrx2xpref1o |
|- ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) : ( RR X. RR ) -1-1-onto-> R |
7 |
|
elxpi |
|- ( a e. ( RR X. RR ) -> E. c E. d ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) ) |
8 |
|
elxpi |
|- ( b e. ( RR X. RR ) -> E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) |
9 |
|
df-br |
|- ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> <. a , b >. e. { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } ) |
10 |
|
opelxpi |
|- ( ( c e. RR /\ d e. RR ) -> <. c , d >. e. ( RR X. RR ) ) |
11 |
10
|
adantl |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> <. c , d >. e. ( RR X. RR ) ) |
12 |
|
eleq1 |
|- ( a = <. c , d >. -> ( a e. ( RR X. RR ) <-> <. c , d >. e. ( RR X. RR ) ) ) |
13 |
12
|
adantr |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( a e. ( RR X. RR ) <-> <. c , d >. e. ( RR X. RR ) ) ) |
14 |
11 13
|
mpbird |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> a e. ( RR X. RR ) ) |
15 |
|
opelxpi |
|- ( ( e e. RR /\ f e. RR ) -> <. e , f >. e. ( RR X. RR ) ) |
16 |
15
|
adantl |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> <. e , f >. e. ( RR X. RR ) ) |
17 |
|
eleq1 |
|- ( b = <. e , f >. -> ( b e. ( RR X. RR ) <-> <. e , f >. e. ( RR X. RR ) ) ) |
18 |
17
|
adantr |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( b e. ( RR X. RR ) <-> <. e , f >. e. ( RR X. RR ) ) ) |
19 |
16 18
|
mpbird |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> b e. ( RR X. RR ) ) |
20 |
|
fveq2 |
|- ( x = a -> ( 1st ` x ) = ( 1st ` a ) ) |
21 |
|
fveq2 |
|- ( y = b -> ( 1st ` y ) = ( 1st ` b ) ) |
22 |
20 21
|
breqan12d |
|- ( ( x = a /\ y = b ) -> ( ( 1st ` x ) < ( 1st ` y ) <-> ( 1st ` a ) < ( 1st ` b ) ) ) |
23 |
20 21
|
eqeqan12d |
|- ( ( x = a /\ y = b ) -> ( ( 1st ` x ) = ( 1st ` y ) <-> ( 1st ` a ) = ( 1st ` b ) ) ) |
24 |
|
fveq2 |
|- ( x = a -> ( 2nd ` x ) = ( 2nd ` a ) ) |
25 |
|
fveq2 |
|- ( y = b -> ( 2nd ` y ) = ( 2nd ` b ) ) |
26 |
24 25
|
breqan12d |
|- ( ( x = a /\ y = b ) -> ( ( 2nd ` x ) < ( 2nd ` y ) <-> ( 2nd ` a ) < ( 2nd ` b ) ) ) |
27 |
23 26
|
anbi12d |
|- ( ( x = a /\ y = b ) -> ( ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) <-> ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) |
28 |
22 27
|
orbi12d |
|- ( ( x = a /\ y = b ) -> ( ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) <-> ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) ) |
29 |
28
|
opelopab2a |
|- ( ( a e. ( RR X. RR ) /\ b e. ( RR X. RR ) ) -> ( <. a , b >. e. { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } <-> ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) ) |
30 |
14 19 29
|
syl2an |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( <. a , b >. e. { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } <-> ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) ) |
31 |
9 30
|
syl5bb |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) ) ) |
32 |
|
1ne2 |
|- 1 =/= 2 |
33 |
|
1ex |
|- 1 e. _V |
34 |
|
vex |
|- c e. _V |
35 |
33 34
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = c ) |
36 |
32 35
|
mp1i |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = c ) |
37 |
|
vex |
|- e e. _V |
38 |
33 37
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) = e ) |
39 |
32 38
|
mp1i |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) = e ) |
40 |
36 39
|
breq12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) <-> c < e ) ) |
41 |
36 39
|
eqeq12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) <-> c = e ) ) |
42 |
|
2ex |
|- 2 e. _V |
43 |
|
vex |
|- d e. _V |
44 |
42 43
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) = d ) |
45 |
32 44
|
mp1i |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) = d ) |
46 |
|
vex |
|- f e. _V |
47 |
42 46
|
fvpr2 |
|- ( 1 =/= 2 -> ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) = f ) |
48 |
32 47
|
mp1i |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) = f ) |
49 |
45 48
|
breq12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) <-> d < f ) ) |
50 |
41 49
|
anbi12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) /\ ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) ) <-> ( c = e /\ d < f ) ) ) |
51 |
40 50
|
orbi12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) \/ ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) /\ ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) ) ) <-> ( c < e \/ ( c = e /\ d < f ) ) ) ) |
52 |
|
eqid |
|- { 1 , 2 } = { 1 , 2 } |
53 |
52 2
|
prelrrx2 |
|- ( ( c e. RR /\ d e. RR ) -> { <. 1 , c >. , <. 2 , d >. } e. R ) |
54 |
53
|
adantl |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> { <. 1 , c >. , <. 2 , d >. } e. R ) |
55 |
52 2
|
prelrrx2 |
|- ( ( e e. RR /\ f e. RR ) -> { <. 1 , e >. , <. 2 , f >. } e. R ) |
56 |
55
|
adantl |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> { <. 1 , e >. , <. 2 , f >. } e. R ) |
57 |
1
|
rrx2plord |
|- ( ( { <. 1 , c >. , <. 2 , d >. } e. R /\ { <. 1 , e >. , <. 2 , f >. } e. R ) -> ( { <. 1 , c >. , <. 2 , d >. } O { <. 1 , e >. , <. 2 , f >. } <-> ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) \/ ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) /\ ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) ) ) ) ) |
58 |
54 56 57
|
syl2an |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , c >. , <. 2 , d >. } O { <. 1 , e >. , <. 2 , f >. } <-> ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) \/ ( ( { <. 1 , c >. , <. 2 , d >. } ` 1 ) = ( { <. 1 , e >. , <. 2 , f >. } ` 1 ) /\ ( { <. 1 , c >. , <. 2 , d >. } ` 2 ) < ( { <. 1 , e >. , <. 2 , f >. } ` 2 ) ) ) ) ) |
59 |
34 43
|
op1std |
|- ( a = <. c , d >. -> ( 1st ` a ) = c ) |
60 |
59
|
adantr |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( 1st ` a ) = c ) |
61 |
37 46
|
op1std |
|- ( b = <. e , f >. -> ( 1st ` b ) = e ) |
62 |
61
|
adantr |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( 1st ` b ) = e ) |
63 |
60 62
|
breqan12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( 1st ` a ) < ( 1st ` b ) <-> c < e ) ) |
64 |
60 62
|
eqeqan12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( 1st ` a ) = ( 1st ` b ) <-> c = e ) ) |
65 |
34 43
|
op2ndd |
|- ( a = <. c , d >. -> ( 2nd ` a ) = d ) |
66 |
65
|
adantr |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( 2nd ` a ) = d ) |
67 |
37 46
|
op2ndd |
|- ( b = <. e , f >. -> ( 2nd ` b ) = f ) |
68 |
67
|
adantr |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( 2nd ` b ) = f ) |
69 |
66 68
|
breqan12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( 2nd ` a ) < ( 2nd ` b ) <-> d < f ) ) |
70 |
64 69
|
anbi12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) <-> ( c = e /\ d < f ) ) ) |
71 |
63 70
|
orbi12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) <-> ( c < e \/ ( c = e /\ d < f ) ) ) ) |
72 |
51 58 71
|
3bitr4rd |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( ( ( 1st ` a ) < ( 1st ` b ) \/ ( ( 1st ` a ) = ( 1st ` b ) /\ ( 2nd ` a ) < ( 2nd ` b ) ) ) <-> { <. 1 , c >. , <. 2 , d >. } O { <. 1 , e >. , <. 2 , f >. } ) ) |
73 |
|
fveq2 |
|- ( a = <. c , d >. -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` <. c , d >. ) ) |
74 |
|
df-ov |
|- ( c ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) d ) = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` <. c , d >. ) |
75 |
73 74
|
eqtr4di |
|- ( a = <. c , d >. -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) = ( c ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) d ) ) |
76 |
|
eqidd |
|- ( ( c e. RR /\ d e. RR ) -> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ) |
77 |
|
opeq2 |
|- ( x = c -> <. 1 , x >. = <. 1 , c >. ) |
78 |
77
|
adantr |
|- ( ( x = c /\ y = d ) -> <. 1 , x >. = <. 1 , c >. ) |
79 |
|
opeq2 |
|- ( y = d -> <. 2 , y >. = <. 2 , d >. ) |
80 |
79
|
adantl |
|- ( ( x = c /\ y = d ) -> <. 2 , y >. = <. 2 , d >. ) |
81 |
78 80
|
preq12d |
|- ( ( x = c /\ y = d ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , c >. , <. 2 , d >. } ) |
82 |
81
|
adantl |
|- ( ( ( c e. RR /\ d e. RR ) /\ ( x = c /\ y = d ) ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , c >. , <. 2 , d >. } ) |
83 |
|
simpl |
|- ( ( c e. RR /\ d e. RR ) -> c e. RR ) |
84 |
|
simpr |
|- ( ( c e. RR /\ d e. RR ) -> d e. RR ) |
85 |
|
prex |
|- { <. 1 , c >. , <. 2 , d >. } e. _V |
86 |
85
|
a1i |
|- ( ( c e. RR /\ d e. RR ) -> { <. 1 , c >. , <. 2 , d >. } e. _V ) |
87 |
76 82 83 84 86
|
ovmpod |
|- ( ( c e. RR /\ d e. RR ) -> ( c ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) d ) = { <. 1 , c >. , <. 2 , d >. } ) |
88 |
75 87
|
sylan9eq |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) = { <. 1 , c >. , <. 2 , d >. } ) |
89 |
88
|
eqcomd |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> { <. 1 , c >. , <. 2 , d >. } = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) ) |
90 |
|
fveq2 |
|- ( b = <. e , f >. -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` <. e , f >. ) ) |
91 |
|
df-ov |
|- ( e ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) f ) = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` <. e , f >. ) |
92 |
90 91
|
eqtr4di |
|- ( b = <. e , f >. -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) = ( e ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) f ) ) |
93 |
|
eqidd |
|- ( ( e e. RR /\ f e. RR ) -> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ) |
94 |
|
opeq2 |
|- ( x = e -> <. 1 , x >. = <. 1 , e >. ) |
95 |
94
|
adantr |
|- ( ( x = e /\ y = f ) -> <. 1 , x >. = <. 1 , e >. ) |
96 |
|
opeq2 |
|- ( y = f -> <. 2 , y >. = <. 2 , f >. ) |
97 |
96
|
adantl |
|- ( ( x = e /\ y = f ) -> <. 2 , y >. = <. 2 , f >. ) |
98 |
95 97
|
preq12d |
|- ( ( x = e /\ y = f ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , e >. , <. 2 , f >. } ) |
99 |
98
|
adantl |
|- ( ( ( e e. RR /\ f e. RR ) /\ ( x = e /\ y = f ) ) -> { <. 1 , x >. , <. 2 , y >. } = { <. 1 , e >. , <. 2 , f >. } ) |
100 |
|
simpl |
|- ( ( e e. RR /\ f e. RR ) -> e e. RR ) |
101 |
|
simpr |
|- ( ( e e. RR /\ f e. RR ) -> f e. RR ) |
102 |
|
prex |
|- { <. 1 , e >. , <. 2 , f >. } e. _V |
103 |
102
|
a1i |
|- ( ( e e. RR /\ f e. RR ) -> { <. 1 , e >. , <. 2 , f >. } e. _V ) |
104 |
93 99 100 101 103
|
ovmpod |
|- ( ( e e. RR /\ f e. RR ) -> ( e ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) f ) = { <. 1 , e >. , <. 2 , f >. } ) |
105 |
92 104
|
sylan9eq |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) = { <. 1 , e >. , <. 2 , f >. } ) |
106 |
105
|
eqcomd |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> { <. 1 , e >. , <. 2 , f >. } = ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) |
107 |
89 106
|
breqan12d |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( { <. 1 , c >. , <. 2 , d >. } O { <. 1 , e >. , <. 2 , f >. } <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) |
108 |
31 72 107
|
3bitrd |
|- ( ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) |
109 |
108
|
expcom |
|- ( ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) |
110 |
109
|
exlimivv |
|- ( E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) |
111 |
110
|
com12 |
|- ( ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) |
112 |
111
|
exlimivv |
|- ( E. c E. d ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) -> ( E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) |
113 |
112
|
imp |
|- ( ( E. c E. d ( a = <. c , d >. /\ ( c e. RR /\ d e. RR ) ) /\ E. e E. f ( b = <. e , f >. /\ ( e e. RR /\ f e. RR ) ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) |
114 |
7 8 113
|
syl2an |
|- ( ( a e. ( RR X. RR ) /\ b e. ( RR X. RR ) ) -> ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) |
115 |
114
|
rgen2 |
|- A. a e. ( RR X. RR ) A. b e. ( RR X. RR ) ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) |
116 |
|
df-isom |
|- ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } , O ( ( RR X. RR ) , R ) <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) : ( RR X. RR ) -1-1-onto-> R /\ A. a e. ( RR X. RR ) A. b e. ( RR X. RR ) ( a { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } b <-> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` a ) O ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) ` b ) ) ) ) |
117 |
6 115 116
|
mpbir2an |
|- ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } , O ( ( RR X. RR ) , R ) |
118 |
|
isoeq2 |
|- ( T = { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } -> ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } , O ( ( RR X. RR ) , R ) ) ) |
119 |
4 118
|
ax-mp |
|- ( ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom { <. x , y >. | ( ( x e. ( RR X. RR ) /\ y e. ( RR X. RR ) ) /\ ( ( 1st ` x ) < ( 1st ` y ) \/ ( ( 1st ` x ) = ( 1st ` y ) /\ ( 2nd ` x ) < ( 2nd ` y ) ) ) ) } , O ( ( RR X. RR ) , R ) ) |
120 |
117 119
|
mpbir |
|- ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) |
121 |
|
isoeq1 |
|- ( F = ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) -> ( F Isom T , O ( ( RR X. RR ) , R ) <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) ) ) |
122 |
3 121
|
ax-mp |
|- ( F Isom T , O ( ( RR X. RR ) , R ) <-> ( x e. RR , y e. RR |-> { <. 1 , x >. , <. 2 , y >. } ) Isom T , O ( ( RR X. RR ) , R ) ) |
123 |
120 122
|
mpbir |
|- F Isom T , O ( ( RR X. RR ) , R ) |