Metamath Proof Explorer


Theorem rspssbasd

Description: The span of a set of ring elements is a set of ring elements. (Contributed by SN, 19-Jun-2025)

Ref Expression
Hypotheses rspssbasd.k 𝐾 = ( RSpan ‘ 𝑅 )
rspssbasd.b 𝐵 = ( Base ‘ 𝑅 )
rspssbasd.r ( 𝜑𝑅 ∈ Ring )
rspssbasd.g ( 𝜑𝐺𝐵 )
Assertion rspssbasd ( 𝜑 → ( 𝐾𝐺 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 rspssbasd.k 𝐾 = ( RSpan ‘ 𝑅 )
2 rspssbasd.b 𝐵 = ( Base ‘ 𝑅 )
3 rspssbasd.r ( 𝜑𝑅 ∈ Ring )
4 rspssbasd.g ( 𝜑𝐺𝐵 )
5 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
6 1 2 5 rspcl ( ( 𝑅 ∈ Ring ∧ 𝐺𝐵 ) → ( 𝐾𝐺 ) ∈ ( LIdeal ‘ 𝑅 ) )
7 3 4 6 syl2anc ( 𝜑 → ( 𝐾𝐺 ) ∈ ( LIdeal ‘ 𝑅 ) )
8 2 5 lidlss ( ( 𝐾𝐺 ) ∈ ( LIdeal ‘ 𝑅 ) → ( 𝐾𝐺 ) ⊆ 𝐵 )
9 7 8 syl ( 𝜑 → ( 𝐾𝐺 ) ⊆ 𝐵 )