Step |
Hyp |
Ref |
Expression |
1 |
|
ellcsrspsn.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
ellcsrspsn.p |
⊢ + = ( +g ‘ 𝑅 ) |
3 |
|
ellcsrspsn.t |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
ellcsrspsn.e |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
5 |
|
ellcsrspsn.u |
⊢ 𝑈 = ( 𝑅 /s ∼ ) |
6 |
|
ellcsrspsn.i |
⊢ 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) |
7 |
|
ellcsrspsn.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
8 |
|
ellcsrspsn.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
9 |
|
ellcsrspsn.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑈 ) ) |
10 |
4 5 1
|
quselbas |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑋 ∈ ( Base ‘ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = [ 𝑥 ] ∼ ) ) |
11 |
7 9 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = [ 𝑥 ] ∼ ) ) |
12 |
9 11
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 𝑋 = [ 𝑥 ] ∼ ) |
13 |
7
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
15 |
|
eqid |
⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) |
16 |
8
|
snssd |
⊢ ( 𝜑 → { 𝑀 } ⊆ 𝐵 ) |
17 |
15 1 7 16
|
rspssbasd |
⊢ ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) ⊆ 𝐵 ) |
18 |
6 17
|
eqsstrid |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 ⊆ 𝐵 ) |
20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
21 |
1 4 2
|
eqglact |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐼 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ∼ = ( ( 𝑖 ∈ 𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) ) |
22 |
14 19 20 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ∼ = ( ( 𝑖 ∈ 𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) ) |
23 |
|
eqid |
⊢ ( 𝑖 ∈ 𝐵 ↦ ( 𝑥 + 𝑖 ) ) = ( 𝑖 ∈ 𝐵 ↦ ( 𝑥 + 𝑖 ) ) |
24 |
|
vex |
⊢ 𝑧 ∈ V |
25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑧 ∈ V ) |
26 |
23 25 19
|
elimampt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑧 ∈ ( ( 𝑖 ∈ 𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = ( 𝑥 + 𝑖 ) ) ) |
27 |
|
oveq2 |
⊢ ( 𝑖 = ( 𝑦 · 𝑀 ) → ( 𝑥 + 𝑖 ) = ( 𝑥 + ( 𝑦 · 𝑀 ) ) ) |
28 |
27
|
eqeq2d |
⊢ ( 𝑖 = ( 𝑦 · 𝑀 ) → ( 𝑧 = ( 𝑥 + 𝑖 ) ↔ 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) ) ) |
29 |
6
|
eleq2i |
⊢ ( 𝑖 ∈ 𝐼 ↔ 𝑖 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) ) |
30 |
1 3 15
|
elrspsn |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑖 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) ↔ ∃ 𝑦 ∈ 𝐵 𝑖 = ( 𝑦 · 𝑀 ) ) ) |
31 |
7 8 30
|
syl2anc |
⊢ ( 𝜑 → ( 𝑖 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) ↔ ∃ 𝑦 ∈ 𝐵 𝑖 = ( 𝑦 · 𝑀 ) ) ) |
32 |
29 31
|
bitrid |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝐼 ↔ ∃ 𝑦 ∈ 𝐵 𝑖 = ( 𝑦 · 𝑀 ) ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑖 ∈ 𝐼 ↔ ∃ 𝑦 ∈ 𝐵 𝑖 = ( 𝑦 · 𝑀 ) ) ) |
34 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 · 𝑀 ) ∈ V ) |
35 |
28 33 34
|
rexxfr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ∃ 𝑖 ∈ 𝐼 𝑧 = ( 𝑥 + 𝑖 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) ) ) |
36 |
26 35
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑧 ∈ ( ( 𝑖 ∈ 𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) ↔ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) ) ) |
37 |
36
|
eqabdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑖 ∈ 𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) |
38 |
22 37
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ∼ = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) |
39 |
|
eqeq1 |
⊢ ( 𝑋 = [ 𝑥 ] ∼ → ( 𝑋 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ↔ [ 𝑥 ] ∼ = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) ) |
40 |
38 39
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 = [ 𝑥 ] ∼ → 𝑋 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) ) |
41 |
40
|
ancld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 = [ 𝑥 ] ∼ → ( 𝑋 = [ 𝑥 ] ∼ ∧ 𝑋 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) ) ) |
42 |
41
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐵 𝑋 = [ 𝑥 ] ∼ → ∃ 𝑥 ∈ 𝐵 ( 𝑋 = [ 𝑥 ] ∼ ∧ 𝑋 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) ) ) |
43 |
12 42
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐵 ( 𝑋 = [ 𝑥 ] ∼ ∧ 𝑋 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) ) |