Metamath Proof Explorer


Theorem ellcsrspsn

Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact and elrspsn . (Contributed by SN, 19-Jun-2025)

Ref Expression
Hypotheses ellcsrspsn.b 𝐵 = ( Base ‘ 𝑅 )
ellcsrspsn.p + = ( +g𝑅 )
ellcsrspsn.t · = ( .r𝑅 )
ellcsrspsn.e = ( 𝑅 ~QG 𝐼 )
ellcsrspsn.u 𝑈 = ( 𝑅 /s )
ellcsrspsn.i 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } )
ellcsrspsn.r ( 𝜑𝑅 ∈ Ring )
ellcsrspsn.m ( 𝜑𝑀𝐵 )
ellcsrspsn.x ( 𝜑𝑋 ∈ ( Base ‘ 𝑈 ) )
Assertion ellcsrspsn ( 𝜑 → ∃ 𝑥𝐵 ( 𝑋 = [ 𝑥 ] 𝑋 = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) )

Proof

Step Hyp Ref Expression
1 ellcsrspsn.b 𝐵 = ( Base ‘ 𝑅 )
2 ellcsrspsn.p + = ( +g𝑅 )
3 ellcsrspsn.t · = ( .r𝑅 )
4 ellcsrspsn.e = ( 𝑅 ~QG 𝐼 )
5 ellcsrspsn.u 𝑈 = ( 𝑅 /s )
6 ellcsrspsn.i 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } )
7 ellcsrspsn.r ( 𝜑𝑅 ∈ Ring )
8 ellcsrspsn.m ( 𝜑𝑀𝐵 )
9 ellcsrspsn.x ( 𝜑𝑋 ∈ ( Base ‘ 𝑈 ) )
10 4 5 1 quselbas ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑋 ∈ ( Base ‘ 𝑈 ) ↔ ∃ 𝑥𝐵 𝑋 = [ 𝑥 ] ) )
11 7 9 10 syl2anc ( 𝜑 → ( 𝑋 ∈ ( Base ‘ 𝑈 ) ↔ ∃ 𝑥𝐵 𝑋 = [ 𝑥 ] ) )
12 9 11 mpbid ( 𝜑 → ∃ 𝑥𝐵 𝑋 = [ 𝑥 ] )
13 7 ringgrpd ( 𝜑𝑅 ∈ Grp )
14 13 adantr ( ( 𝜑𝑥𝐵 ) → 𝑅 ∈ Grp )
15 eqid ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 )
16 8 snssd ( 𝜑 → { 𝑀 } ⊆ 𝐵 )
17 15 1 7 16 rspssbasd ( 𝜑 → ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) ⊆ 𝐵 )
18 6 17 eqsstrid ( 𝜑𝐼𝐵 )
19 18 adantr ( ( 𝜑𝑥𝐵 ) → 𝐼𝐵 )
20 simpr ( ( 𝜑𝑥𝐵 ) → 𝑥𝐵 )
21 1 4 2 eqglact ( ( 𝑅 ∈ Grp ∧ 𝐼𝐵𝑥𝐵 ) → [ 𝑥 ] = ( ( 𝑖𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) )
22 14 19 20 21 syl3anc ( ( 𝜑𝑥𝐵 ) → [ 𝑥 ] = ( ( 𝑖𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) )
23 eqid ( 𝑖𝐵 ↦ ( 𝑥 + 𝑖 ) ) = ( 𝑖𝐵 ↦ ( 𝑥 + 𝑖 ) )
24 vex 𝑧 ∈ V
25 24 a1i ( ( 𝜑𝑥𝐵 ) → 𝑧 ∈ V )
26 23 25 19 elimampt ( ( 𝜑𝑥𝐵 ) → ( 𝑧 ∈ ( ( 𝑖𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) ↔ ∃ 𝑖𝐼 𝑧 = ( 𝑥 + 𝑖 ) ) )
27 oveq2 ( 𝑖 = ( 𝑦 · 𝑀 ) → ( 𝑥 + 𝑖 ) = ( 𝑥 + ( 𝑦 · 𝑀 ) ) )
28 27 eqeq2d ( 𝑖 = ( 𝑦 · 𝑀 ) → ( 𝑧 = ( 𝑥 + 𝑖 ) ↔ 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) ) )
29 6 eleq2i ( 𝑖𝐼𝑖 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) )
30 1 3 15 elrspsn ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑖 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) ↔ ∃ 𝑦𝐵 𝑖 = ( 𝑦 · 𝑀 ) ) )
31 7 8 30 syl2anc ( 𝜑 → ( 𝑖 ∈ ( ( RSpan ‘ 𝑅 ) ‘ { 𝑀 } ) ↔ ∃ 𝑦𝐵 𝑖 = ( 𝑦 · 𝑀 ) ) )
32 29 31 bitrid ( 𝜑 → ( 𝑖𝐼 ↔ ∃ 𝑦𝐵 𝑖 = ( 𝑦 · 𝑀 ) ) )
33 32 adantr ( ( 𝜑𝑥𝐵 ) → ( 𝑖𝐼 ↔ ∃ 𝑦𝐵 𝑖 = ( 𝑦 · 𝑀 ) ) )
34 ovexd ( ( 𝜑𝑥𝐵 ) → ( 𝑦 · 𝑀 ) ∈ V )
35 28 33 34 rexxfr3d ( ( 𝜑𝑥𝐵 ) → ( ∃ 𝑖𝐼 𝑧 = ( 𝑥 + 𝑖 ) ↔ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) ) )
36 26 35 bitrd ( ( 𝜑𝑥𝐵 ) → ( 𝑧 ∈ ( ( 𝑖𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) ↔ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) ) )
37 36 eqabdv ( ( 𝜑𝑥𝐵 ) → ( ( 𝑖𝐵 ↦ ( 𝑥 + 𝑖 ) ) “ 𝐼 ) = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } )
38 22 37 eqtrd ( ( 𝜑𝑥𝐵 ) → [ 𝑥 ] = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } )
39 eqeq1 ( 𝑋 = [ 𝑥 ] → ( 𝑋 = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ↔ [ 𝑥 ] = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) )
40 38 39 syl5ibrcom ( ( 𝜑𝑥𝐵 ) → ( 𝑋 = [ 𝑥 ] 𝑋 = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) )
41 40 ancld ( ( 𝜑𝑥𝐵 ) → ( 𝑋 = [ 𝑥 ] → ( 𝑋 = [ 𝑥 ] 𝑋 = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) ) )
42 41 reximdva ( 𝜑 → ( ∃ 𝑥𝐵 𝑋 = [ 𝑥 ] → ∃ 𝑥𝐵 ( 𝑋 = [ 𝑥 ] 𝑋 = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) ) )
43 12 42 mpd ( 𝜑 → ∃ 𝑥𝐵 ( 𝑋 = [ 𝑥 ] 𝑋 = { 𝑧 ∣ ∃ 𝑦𝐵 𝑧 = ( 𝑥 + ( 𝑦 · 𝑀 ) ) } ) )