| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ply1divalg3.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
ply1divalg3.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 3 |
|
ply1divalg3.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
ply1divalg3.m |
⊢ + = ( +g ‘ 𝑃 ) |
| 5 |
|
ply1divalg3.t |
⊢ ∙ = ( .r ‘ 𝑃 ) |
| 6 |
|
ply1divalg3.c |
⊢ 𝐶 = ( Unic1p ‘ 𝑅 ) |
| 7 |
|
ply1divalg3.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 |
|
ply1divalg3.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 9 |
|
ply1divalg3.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐶 ) |
| 10 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 12 |
1 3 6
|
uc1pcl |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵 ) |
| 13 |
9 12
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 14 |
1 11 6
|
uc1pn0 |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ≠ ( 0g ‘ 𝑃 ) ) |
| 15 |
9 14
|
syl |
⊢ ( 𝜑 → 𝐺 ≠ ( 0g ‘ 𝑃 ) ) |
| 16 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 17 |
2 16 6
|
uc1pldg |
⊢ ( 𝐺 ∈ 𝐶 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 18 |
9 17
|
syl |
⊢ ( 𝜑 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 19 |
1 2 3 10 11 5 7 8 13 15 18 16
|
ply1divalg2 |
⊢ ( 𝜑 → ∃! 𝑝 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑝 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 20 |
|
eqid |
⊢ ( invg ‘ 𝑃 ) = ( invg ‘ 𝑃 ) |
| 21 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 22 |
7 21
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 23 |
22
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑃 ∈ Grp ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑞 ∈ 𝐵 ) |
| 26 |
3 20 24 25
|
grpinvcld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∈ 𝐵 ) |
| 27 |
3 20 23
|
grpinvf1o |
⊢ ( 𝜑 → ( invg ‘ 𝑃 ) : 𝐵 –1-1-onto→ 𝐵 ) |
| 28 |
|
f1ofveu |
⊢ ( ( ( invg ‘ 𝑃 ) : 𝐵 –1-1-onto→ 𝐵 ∧ 𝑝 ∈ 𝐵 ) → ∃! 𝑞 ∈ 𝐵 ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) = 𝑝 ) |
| 29 |
27 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ∃! 𝑞 ∈ 𝐵 ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) = 𝑝 ) |
| 30 |
|
eqcom |
⊢ ( 𝑝 = ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ↔ ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) = 𝑝 ) |
| 31 |
30
|
reubii |
⊢ ( ∃! 𝑞 ∈ 𝐵 𝑝 = ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ↔ ∃! 𝑞 ∈ 𝐵 ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) = 𝑝 ) |
| 32 |
29 31
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ∃! 𝑞 ∈ 𝐵 𝑝 = ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ) |
| 33 |
|
oveq1 |
⊢ ( 𝑝 = ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) → ( 𝑝 ∙ 𝐺 ) = ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) |
| 34 |
33
|
oveq2d |
⊢ ( 𝑝 = ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) → ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑝 ∙ 𝐺 ) ) = ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝑝 = ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) → ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑝 ∙ 𝐺 ) ) ) = ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) ) |
| 36 |
35
|
breq1d |
⊢ ( 𝑝 = ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) → ( ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑝 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 37 |
26 32 36
|
reuxfr1ds |
⊢ ( 𝜑 → ( ∃! 𝑝 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( 𝑝 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 38 |
19 37
|
mpbid |
⊢ ( 𝜑 → ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 39 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 40 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
| 41 |
3 5 39 26 40
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ∈ 𝐵 ) |
| 42 |
3 4 20 10
|
grpsubval |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ∈ 𝐵 ) → ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) = ( 𝐹 + ( ( invg ‘ 𝑃 ) ‘ ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) ) |
| 43 |
8 41 42
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) = ( 𝐹 + ( ( invg ‘ 𝑃 ) ‘ ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) ) |
| 44 |
3 5 20 39 25 40
|
ringmneg1 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) = ( ( invg ‘ 𝑃 ) ‘ ( 𝑞 ∙ 𝐺 ) ) ) |
| 45 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ( invg ‘ 𝑃 ) ‘ ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) = ( ( invg ‘ 𝑃 ) ‘ ( ( invg ‘ 𝑃 ) ‘ ( 𝑞 ∙ 𝐺 ) ) ) ) |
| 46 |
3 5 39 25 40
|
ringcld |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝑞 ∙ 𝐺 ) ∈ 𝐵 ) |
| 47 |
3 20
|
grpinvinv |
⊢ ( ( 𝑃 ∈ Grp ∧ ( 𝑞 ∙ 𝐺 ) ∈ 𝐵 ) → ( ( invg ‘ 𝑃 ) ‘ ( ( invg ‘ 𝑃 ) ‘ ( 𝑞 ∙ 𝐺 ) ) ) = ( 𝑞 ∙ 𝐺 ) ) |
| 48 |
23 46 47
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ( invg ‘ 𝑃 ) ‘ ( ( invg ‘ 𝑃 ) ‘ ( 𝑞 ∙ 𝐺 ) ) ) = ( 𝑞 ∙ 𝐺 ) ) |
| 49 |
45 48
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ( invg ‘ 𝑃 ) ‘ ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) = ( 𝑞 ∙ 𝐺 ) ) |
| 50 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐹 + ( ( invg ‘ 𝑃 ) ‘ ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) = ( 𝐹 + ( 𝑞 ∙ 𝐺 ) ) ) |
| 51 |
43 50
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) = ( 𝐹 + ( 𝑞 ∙ 𝐺 ) ) ) |
| 52 |
51
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) = ( 𝐷 ‘ ( 𝐹 + ( 𝑞 ∙ 𝐺 ) ) ) ) |
| 53 |
52
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐵 ) → ( ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 + ( 𝑞 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 54 |
53
|
reubidva |
⊢ ( 𝜑 → ( ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 ( -g ‘ 𝑃 ) ( ( ( invg ‘ 𝑃 ) ‘ 𝑞 ) ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 + ( 𝑞 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 55 |
38 54
|
mpbid |
⊢ ( 𝜑 → ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 + ( 𝑞 ∙ 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |