Metamath Proof Explorer


Theorem ply1divalg3

Description: Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 to addition. (Contributed by SN, 20-Jun-2025)

Ref Expression
Hypotheses ply1divalg3.p 𝑃 = ( Poly1𝑅 )
ply1divalg3.d 𝐷 = ( deg1𝑅 )
ply1divalg3.b 𝐵 = ( Base ‘ 𝑃 )
ply1divalg3.m + = ( +g𝑃 )
ply1divalg3.t = ( .r𝑃 )
ply1divalg3.c 𝐶 = ( Unic1p𝑅 )
ply1divalg3.r ( 𝜑𝑅 ∈ Ring )
ply1divalg3.f ( 𝜑𝐹𝐵 )
ply1divalg3.g ( 𝜑𝐺𝐶 )
Assertion ply1divalg3 ( 𝜑 → ∃! 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 + ( 𝑞 𝐺 ) ) ) < ( 𝐷𝐺 ) )

Proof

Step Hyp Ref Expression
1 ply1divalg3.p 𝑃 = ( Poly1𝑅 )
2 ply1divalg3.d 𝐷 = ( deg1𝑅 )
3 ply1divalg3.b 𝐵 = ( Base ‘ 𝑃 )
4 ply1divalg3.m + = ( +g𝑃 )
5 ply1divalg3.t = ( .r𝑃 )
6 ply1divalg3.c 𝐶 = ( Unic1p𝑅 )
7 ply1divalg3.r ( 𝜑𝑅 ∈ Ring )
8 ply1divalg3.f ( 𝜑𝐹𝐵 )
9 ply1divalg3.g ( 𝜑𝐺𝐶 )
10 eqid ( -g𝑃 ) = ( -g𝑃 )
11 eqid ( 0g𝑃 ) = ( 0g𝑃 )
12 1 3 6 uc1pcl ( 𝐺𝐶𝐺𝐵 )
13 9 12 syl ( 𝜑𝐺𝐵 )
14 1 11 6 uc1pn0 ( 𝐺𝐶𝐺 ≠ ( 0g𝑃 ) )
15 9 14 syl ( 𝜑𝐺 ≠ ( 0g𝑃 ) )
16 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
17 2 16 6 uc1pldg ( 𝐺𝐶 → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) )
18 9 17 syl ( 𝜑 → ( ( coe1𝐺 ) ‘ ( 𝐷𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) )
19 1 2 3 10 11 5 7 8 13 15 18 16 ply1divalg2 ( 𝜑 → ∃! 𝑝𝐵 ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( 𝑝 𝐺 ) ) ) < ( 𝐷𝐺 ) )
20 eqid ( invg𝑃 ) = ( invg𝑃 )
21 1 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
22 7 21 syl ( 𝜑𝑃 ∈ Ring )
23 22 ringgrpd ( 𝜑𝑃 ∈ Grp )
24 23 adantr ( ( 𝜑𝑞𝐵 ) → 𝑃 ∈ Grp )
25 simpr ( ( 𝜑𝑞𝐵 ) → 𝑞𝐵 )
26 3 20 24 25 grpinvcld ( ( 𝜑𝑞𝐵 ) → ( ( invg𝑃 ) ‘ 𝑞 ) ∈ 𝐵 )
27 3 20 23 grpinvf1o ( 𝜑 → ( invg𝑃 ) : 𝐵1-1-onto𝐵 )
28 f1ofveu ( ( ( invg𝑃 ) : 𝐵1-1-onto𝐵𝑝𝐵 ) → ∃! 𝑞𝐵 ( ( invg𝑃 ) ‘ 𝑞 ) = 𝑝 )
29 27 28 sylan ( ( 𝜑𝑝𝐵 ) → ∃! 𝑞𝐵 ( ( invg𝑃 ) ‘ 𝑞 ) = 𝑝 )
30 eqcom ( 𝑝 = ( ( invg𝑃 ) ‘ 𝑞 ) ↔ ( ( invg𝑃 ) ‘ 𝑞 ) = 𝑝 )
31 30 reubii ( ∃! 𝑞𝐵 𝑝 = ( ( invg𝑃 ) ‘ 𝑞 ) ↔ ∃! 𝑞𝐵 ( ( invg𝑃 ) ‘ 𝑞 ) = 𝑝 )
32 29 31 sylibr ( ( 𝜑𝑝𝐵 ) → ∃! 𝑞𝐵 𝑝 = ( ( invg𝑃 ) ‘ 𝑞 ) )
33 oveq1 ( 𝑝 = ( ( invg𝑃 ) ‘ 𝑞 ) → ( 𝑝 𝐺 ) = ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) )
34 33 oveq2d ( 𝑝 = ( ( invg𝑃 ) ‘ 𝑞 ) → ( 𝐹 ( -g𝑃 ) ( 𝑝 𝐺 ) ) = ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) )
35 34 fveq2d ( 𝑝 = ( ( invg𝑃 ) ‘ 𝑞 ) → ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( 𝑝 𝐺 ) ) ) = ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) )
36 35 breq1d ( 𝑝 = ( ( invg𝑃 ) ‘ 𝑞 ) → ( ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( 𝑝 𝐺 ) ) ) < ( 𝐷𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) < ( 𝐷𝐺 ) ) )
37 26 32 36 reuxfr1ds ( 𝜑 → ( ∃! 𝑝𝐵 ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( 𝑝 𝐺 ) ) ) < ( 𝐷𝐺 ) ↔ ∃! 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) < ( 𝐷𝐺 ) ) )
38 19 37 mpbid ( 𝜑 → ∃! 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) < ( 𝐷𝐺 ) )
39 22 adantr ( ( 𝜑𝑞𝐵 ) → 𝑃 ∈ Ring )
40 13 adantr ( ( 𝜑𝑞𝐵 ) → 𝐺𝐵 )
41 3 5 39 26 40 ringcld ( ( 𝜑𝑞𝐵 ) → ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ∈ 𝐵 )
42 3 4 20 10 grpsubval ( ( 𝐹𝐵 ∧ ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ∈ 𝐵 ) → ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) = ( 𝐹 + ( ( invg𝑃 ) ‘ ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) )
43 8 41 42 syl2an2r ( ( 𝜑𝑞𝐵 ) → ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) = ( 𝐹 + ( ( invg𝑃 ) ‘ ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) )
44 3 5 20 39 25 40 ringmneg1 ( ( 𝜑𝑞𝐵 ) → ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) = ( ( invg𝑃 ) ‘ ( 𝑞 𝐺 ) ) )
45 44 fveq2d ( ( 𝜑𝑞𝐵 ) → ( ( invg𝑃 ) ‘ ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) = ( ( invg𝑃 ) ‘ ( ( invg𝑃 ) ‘ ( 𝑞 𝐺 ) ) ) )
46 3 5 39 25 40 ringcld ( ( 𝜑𝑞𝐵 ) → ( 𝑞 𝐺 ) ∈ 𝐵 )
47 3 20 grpinvinv ( ( 𝑃 ∈ Grp ∧ ( 𝑞 𝐺 ) ∈ 𝐵 ) → ( ( invg𝑃 ) ‘ ( ( invg𝑃 ) ‘ ( 𝑞 𝐺 ) ) ) = ( 𝑞 𝐺 ) )
48 23 46 47 syl2an2r ( ( 𝜑𝑞𝐵 ) → ( ( invg𝑃 ) ‘ ( ( invg𝑃 ) ‘ ( 𝑞 𝐺 ) ) ) = ( 𝑞 𝐺 ) )
49 45 48 eqtrd ( ( 𝜑𝑞𝐵 ) → ( ( invg𝑃 ) ‘ ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) = ( 𝑞 𝐺 ) )
50 49 oveq2d ( ( 𝜑𝑞𝐵 ) → ( 𝐹 + ( ( invg𝑃 ) ‘ ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) = ( 𝐹 + ( 𝑞 𝐺 ) ) )
51 43 50 eqtrd ( ( 𝜑𝑞𝐵 ) → ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) = ( 𝐹 + ( 𝑞 𝐺 ) ) )
52 51 fveq2d ( ( 𝜑𝑞𝐵 ) → ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) = ( 𝐷 ‘ ( 𝐹 + ( 𝑞 𝐺 ) ) ) )
53 52 breq1d ( ( 𝜑𝑞𝐵 ) → ( ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) < ( 𝐷𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 + ( 𝑞 𝐺 ) ) ) < ( 𝐷𝐺 ) ) )
54 53 reubidva ( 𝜑 → ( ∃! 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 ( -g𝑃 ) ( ( ( invg𝑃 ) ‘ 𝑞 ) 𝐺 ) ) ) < ( 𝐷𝐺 ) ↔ ∃! 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 + ( 𝑞 𝐺 ) ) ) < ( 𝐷𝐺 ) ) )
55 38 54 mpbid ( 𝜑 → ∃! 𝑞𝐵 ( 𝐷 ‘ ( 𝐹 + ( 𝑞 𝐺 ) ) ) < ( 𝐷𝐺 ) )