Metamath Proof Explorer


Theorem ply1divalg3

Description: Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 to addition. (Contributed by SN, 20-Jun-2025)

Ref Expression
Hypotheses ply1divalg3.p P = Poly 1 R
ply1divalg3.d D = deg 1 R
ply1divalg3.b B = Base P
ply1divalg3.m + ˙ = + P
ply1divalg3.t ˙ = P
ply1divalg3.c C = Unic 1p R
ply1divalg3.r φ R Ring
ply1divalg3.f φ F B
ply1divalg3.g φ G C
Assertion ply1divalg3 φ ∃! q B D F + ˙ q ˙ G < D G

Proof

Step Hyp Ref Expression
1 ply1divalg3.p P = Poly 1 R
2 ply1divalg3.d D = deg 1 R
3 ply1divalg3.b B = Base P
4 ply1divalg3.m + ˙ = + P
5 ply1divalg3.t ˙ = P
6 ply1divalg3.c C = Unic 1p R
7 ply1divalg3.r φ R Ring
8 ply1divalg3.f φ F B
9 ply1divalg3.g φ G C
10 eqid - P = - P
11 eqid 0 P = 0 P
12 1 3 6 uc1pcl G C G B
13 9 12 syl φ G B
14 1 11 6 uc1pn0 G C G 0 P
15 9 14 syl φ G 0 P
16 eqid Unit R = Unit R
17 2 16 6 uc1pldg G C coe 1 G D G Unit R
18 9 17 syl φ coe 1 G D G Unit R
19 1 2 3 10 11 5 7 8 13 15 18 16 ply1divalg2 φ ∃! p B D F - P p ˙ G < D G
20 eqid inv g P = inv g P
21 1 ply1ring R Ring P Ring
22 7 21 syl φ P Ring
23 22 ringgrpd φ P Grp
24 23 adantr φ q B P Grp
25 simpr φ q B q B
26 3 20 24 25 grpinvcld φ q B inv g P q B
27 3 20 23 grpinvf1o φ inv g P : B 1-1 onto B
28 f1ofveu inv g P : B 1-1 onto B p B ∃! q B inv g P q = p
29 27 28 sylan φ p B ∃! q B inv g P q = p
30 eqcom p = inv g P q inv g P q = p
31 30 reubii ∃! q B p = inv g P q ∃! q B inv g P q = p
32 29 31 sylibr φ p B ∃! q B p = inv g P q
33 oveq1 p = inv g P q p ˙ G = inv g P q ˙ G
34 33 oveq2d p = inv g P q F - P p ˙ G = F - P inv g P q ˙ G
35 34 fveq2d p = inv g P q D F - P p ˙ G = D F - P inv g P q ˙ G
36 35 breq1d p = inv g P q D F - P p ˙ G < D G D F - P inv g P q ˙ G < D G
37 26 32 36 reuxfr1ds φ ∃! p B D F - P p ˙ G < D G ∃! q B D F - P inv g P q ˙ G < D G
38 19 37 mpbid φ ∃! q B D F - P inv g P q ˙ G < D G
39 22 adantr φ q B P Ring
40 13 adantr φ q B G B
41 3 5 39 26 40 ringcld φ q B inv g P q ˙ G B
42 3 4 20 10 grpsubval F B inv g P q ˙ G B F - P inv g P q ˙ G = F + ˙ inv g P inv g P q ˙ G
43 8 41 42 syl2an2r φ q B F - P inv g P q ˙ G = F + ˙ inv g P inv g P q ˙ G
44 3 5 20 39 25 40 ringmneg1 φ q B inv g P q ˙ G = inv g P q ˙ G
45 44 fveq2d φ q B inv g P inv g P q ˙ G = inv g P inv g P q ˙ G
46 3 5 39 25 40 ringcld φ q B q ˙ G B
47 3 20 grpinvinv P Grp q ˙ G B inv g P inv g P q ˙ G = q ˙ G
48 23 46 47 syl2an2r φ q B inv g P inv g P q ˙ G = q ˙ G
49 45 48 eqtrd φ q B inv g P inv g P q ˙ G = q ˙ G
50 49 oveq2d φ q B F + ˙ inv g P inv g P q ˙ G = F + ˙ q ˙ G
51 43 50 eqtrd φ q B F - P inv g P q ˙ G = F + ˙ q ˙ G
52 51 fveq2d φ q B D F - P inv g P q ˙ G = D F + ˙ q ˙ G
53 52 breq1d φ q B D F - P inv g P q ˙ G < D G D F + ˙ q ˙ G < D G
54 53 reubidva φ ∃! q B D F - P inv g P q ˙ G < D G ∃! q B D F + ˙ q ˙ G < D G
55 38 54 mpbid φ ∃! q B D F + ˙ q ˙ G < D G