Step |
Hyp |
Ref |
Expression |
1 |
|
ply1divalg3.p |
|
2 |
|
ply1divalg3.d |
|
3 |
|
ply1divalg3.b |
|
4 |
|
ply1divalg3.m |
|
5 |
|
ply1divalg3.t |
|
6 |
|
ply1divalg3.c |
|
7 |
|
ply1divalg3.r |
|
8 |
|
ply1divalg3.f |
|
9 |
|
ply1divalg3.g |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
1 3 6
|
uc1pcl |
|
13 |
9 12
|
syl |
|
14 |
1 11 6
|
uc1pn0 |
|
15 |
9 14
|
syl |
|
16 |
|
eqid |
|
17 |
2 16 6
|
uc1pldg |
|
18 |
9 17
|
syl |
|
19 |
1 2 3 10 11 5 7 8 13 15 18 16
|
ply1divalg2 |
|
20 |
|
eqid |
|
21 |
1
|
ply1ring |
|
22 |
7 21
|
syl |
|
23 |
22
|
ringgrpd |
|
24 |
23
|
adantr |
|
25 |
|
simpr |
|
26 |
3 20 24 25
|
grpinvcld |
|
27 |
3 20 23
|
grpinvf1o |
|
28 |
|
f1ofveu |
|
29 |
27 28
|
sylan |
|
30 |
|
eqcom |
|
31 |
30
|
reubii |
|
32 |
29 31
|
sylibr |
|
33 |
|
oveq1 |
|
34 |
33
|
oveq2d |
|
35 |
34
|
fveq2d |
|
36 |
35
|
breq1d |
|
37 |
26 32 36
|
reuxfr1ds |
|
38 |
19 37
|
mpbid |
|
39 |
22
|
adantr |
|
40 |
13
|
adantr |
|
41 |
3 5 39 26 40
|
ringcld |
|
42 |
3 4 20 10
|
grpsubval |
|
43 |
8 41 42
|
syl2an2r |
|
44 |
3 5 20 39 25 40
|
ringmneg1 |
|
45 |
44
|
fveq2d |
|
46 |
3 5 39 25 40
|
ringcld |
|
47 |
3 20
|
grpinvinv |
|
48 |
23 46 47
|
syl2an2r |
|
49 |
45 48
|
eqtrd |
|
50 |
49
|
oveq2d |
|
51 |
43 50
|
eqtrd |
|
52 |
51
|
fveq2d |
|
53 |
52
|
breq1d |
|
54 |
53
|
reubidva |
|
55 |
38 54
|
mpbid |
|