Step |
Hyp |
Ref |
Expression |
1 |
|
ply1divalg3.p |
|- P = ( Poly1 ` R ) |
2 |
|
ply1divalg3.d |
|- D = ( deg1 ` R ) |
3 |
|
ply1divalg3.b |
|- B = ( Base ` P ) |
4 |
|
ply1divalg3.m |
|- .+ = ( +g ` P ) |
5 |
|
ply1divalg3.t |
|- .xb = ( .r ` P ) |
6 |
|
ply1divalg3.c |
|- C = ( Unic1p ` R ) |
7 |
|
ply1divalg3.r |
|- ( ph -> R e. Ring ) |
8 |
|
ply1divalg3.f |
|- ( ph -> F e. B ) |
9 |
|
ply1divalg3.g |
|- ( ph -> G e. C ) |
10 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
11 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
12 |
1 3 6
|
uc1pcl |
|- ( G e. C -> G e. B ) |
13 |
9 12
|
syl |
|- ( ph -> G e. B ) |
14 |
1 11 6
|
uc1pn0 |
|- ( G e. C -> G =/= ( 0g ` P ) ) |
15 |
9 14
|
syl |
|- ( ph -> G =/= ( 0g ` P ) ) |
16 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
17 |
2 16 6
|
uc1pldg |
|- ( G e. C -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Unit ` R ) ) |
18 |
9 17
|
syl |
|- ( ph -> ( ( coe1 ` G ) ` ( D ` G ) ) e. ( Unit ` R ) ) |
19 |
1 2 3 10 11 5 7 8 13 15 18 16
|
ply1divalg2 |
|- ( ph -> E! p e. B ( D ` ( F ( -g ` P ) ( p .xb G ) ) ) < ( D ` G ) ) |
20 |
|
eqid |
|- ( invg ` P ) = ( invg ` P ) |
21 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
22 |
7 21
|
syl |
|- ( ph -> P e. Ring ) |
23 |
22
|
ringgrpd |
|- ( ph -> P e. Grp ) |
24 |
23
|
adantr |
|- ( ( ph /\ q e. B ) -> P e. Grp ) |
25 |
|
simpr |
|- ( ( ph /\ q e. B ) -> q e. B ) |
26 |
3 20 24 25
|
grpinvcld |
|- ( ( ph /\ q e. B ) -> ( ( invg ` P ) ` q ) e. B ) |
27 |
3 20 23
|
grpinvf1o |
|- ( ph -> ( invg ` P ) : B -1-1-onto-> B ) |
28 |
|
f1ofveu |
|- ( ( ( invg ` P ) : B -1-1-onto-> B /\ p e. B ) -> E! q e. B ( ( invg ` P ) ` q ) = p ) |
29 |
27 28
|
sylan |
|- ( ( ph /\ p e. B ) -> E! q e. B ( ( invg ` P ) ` q ) = p ) |
30 |
|
eqcom |
|- ( p = ( ( invg ` P ) ` q ) <-> ( ( invg ` P ) ` q ) = p ) |
31 |
30
|
reubii |
|- ( E! q e. B p = ( ( invg ` P ) ` q ) <-> E! q e. B ( ( invg ` P ) ` q ) = p ) |
32 |
29 31
|
sylibr |
|- ( ( ph /\ p e. B ) -> E! q e. B p = ( ( invg ` P ) ` q ) ) |
33 |
|
oveq1 |
|- ( p = ( ( invg ` P ) ` q ) -> ( p .xb G ) = ( ( ( invg ` P ) ` q ) .xb G ) ) |
34 |
33
|
oveq2d |
|- ( p = ( ( invg ` P ) ` q ) -> ( F ( -g ` P ) ( p .xb G ) ) = ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) ) |
35 |
34
|
fveq2d |
|- ( p = ( ( invg ` P ) ` q ) -> ( D ` ( F ( -g ` P ) ( p .xb G ) ) ) = ( D ` ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) ) ) |
36 |
35
|
breq1d |
|- ( p = ( ( invg ` P ) ` q ) -> ( ( D ` ( F ( -g ` P ) ( p .xb G ) ) ) < ( D ` G ) <-> ( D ` ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) ) < ( D ` G ) ) ) |
37 |
26 32 36
|
reuxfr1ds |
|- ( ph -> ( E! p e. B ( D ` ( F ( -g ` P ) ( p .xb G ) ) ) < ( D ` G ) <-> E! q e. B ( D ` ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) ) < ( D ` G ) ) ) |
38 |
19 37
|
mpbid |
|- ( ph -> E! q e. B ( D ` ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) ) < ( D ` G ) ) |
39 |
22
|
adantr |
|- ( ( ph /\ q e. B ) -> P e. Ring ) |
40 |
13
|
adantr |
|- ( ( ph /\ q e. B ) -> G e. B ) |
41 |
3 5 39 26 40
|
ringcld |
|- ( ( ph /\ q e. B ) -> ( ( ( invg ` P ) ` q ) .xb G ) e. B ) |
42 |
3 4 20 10
|
grpsubval |
|- ( ( F e. B /\ ( ( ( invg ` P ) ` q ) .xb G ) e. B ) -> ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) = ( F .+ ( ( invg ` P ) ` ( ( ( invg ` P ) ` q ) .xb G ) ) ) ) |
43 |
8 41 42
|
syl2an2r |
|- ( ( ph /\ q e. B ) -> ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) = ( F .+ ( ( invg ` P ) ` ( ( ( invg ` P ) ` q ) .xb G ) ) ) ) |
44 |
3 5 20 39 25 40
|
ringmneg1 |
|- ( ( ph /\ q e. B ) -> ( ( ( invg ` P ) ` q ) .xb G ) = ( ( invg ` P ) ` ( q .xb G ) ) ) |
45 |
44
|
fveq2d |
|- ( ( ph /\ q e. B ) -> ( ( invg ` P ) ` ( ( ( invg ` P ) ` q ) .xb G ) ) = ( ( invg ` P ) ` ( ( invg ` P ) ` ( q .xb G ) ) ) ) |
46 |
3 5 39 25 40
|
ringcld |
|- ( ( ph /\ q e. B ) -> ( q .xb G ) e. B ) |
47 |
3 20
|
grpinvinv |
|- ( ( P e. Grp /\ ( q .xb G ) e. B ) -> ( ( invg ` P ) ` ( ( invg ` P ) ` ( q .xb G ) ) ) = ( q .xb G ) ) |
48 |
23 46 47
|
syl2an2r |
|- ( ( ph /\ q e. B ) -> ( ( invg ` P ) ` ( ( invg ` P ) ` ( q .xb G ) ) ) = ( q .xb G ) ) |
49 |
45 48
|
eqtrd |
|- ( ( ph /\ q e. B ) -> ( ( invg ` P ) ` ( ( ( invg ` P ) ` q ) .xb G ) ) = ( q .xb G ) ) |
50 |
49
|
oveq2d |
|- ( ( ph /\ q e. B ) -> ( F .+ ( ( invg ` P ) ` ( ( ( invg ` P ) ` q ) .xb G ) ) ) = ( F .+ ( q .xb G ) ) ) |
51 |
43 50
|
eqtrd |
|- ( ( ph /\ q e. B ) -> ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) = ( F .+ ( q .xb G ) ) ) |
52 |
51
|
fveq2d |
|- ( ( ph /\ q e. B ) -> ( D ` ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) ) = ( D ` ( F .+ ( q .xb G ) ) ) ) |
53 |
52
|
breq1d |
|- ( ( ph /\ q e. B ) -> ( ( D ` ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) ) < ( D ` G ) <-> ( D ` ( F .+ ( q .xb G ) ) ) < ( D ` G ) ) ) |
54 |
53
|
reubidva |
|- ( ph -> ( E! q e. B ( D ` ( F ( -g ` P ) ( ( ( invg ` P ) ` q ) .xb G ) ) ) < ( D ` G ) <-> E! q e. B ( D ` ( F .+ ( q .xb G ) ) ) < ( D ` G ) ) ) |
55 |
38 54
|
mpbid |
|- ( ph -> E! q e. B ( D ` ( F .+ ( q .xb G ) ) ) < ( D ` G ) ) |