| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1peuqus.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
r1peuqus.i |
|- I = ( ( RSpan ` P ) ` { F } ) |
| 3 |
|
r1peuqus.t |
|- T = ( P /s ( P ~QG I ) ) |
| 4 |
|
r1peuqus.q |
|- Q = ( Base ` T ) |
| 5 |
|
r1peuqus.n |
|- N = ( Unic1p ` R ) |
| 6 |
|
r1peuqus.d |
|- D = ( deg1 ` R ) |
| 7 |
|
r1peuqus.r |
|- ( ph -> R e. Domn ) |
| 8 |
|
r1peuqus.f |
|- ( ph -> F e. N ) |
| 9 |
|
r1peuqus.z |
|- ( ph -> Z e. Q ) |
| 10 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 11 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 12 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 13 |
|
eqid |
|- ( P ~QG I ) = ( P ~QG I ) |
| 14 |
1
|
ply1domn |
|- ( R e. Domn -> P e. Domn ) |
| 15 |
7 14
|
syl |
|- ( ph -> P e. Domn ) |
| 16 |
|
domnring |
|- ( P e. Domn -> P e. Ring ) |
| 17 |
15 16
|
syl |
|- ( ph -> P e. Ring ) |
| 18 |
1 10 5
|
uc1pcl |
|- ( F e. N -> F e. ( Base ` P ) ) |
| 19 |
8 18
|
syl |
|- ( ph -> F e. ( Base ` P ) ) |
| 20 |
9 4
|
eleqtrdi |
|- ( ph -> Z e. ( Base ` T ) ) |
| 21 |
10 11 12 13 3 2 17 19 20
|
ellcsrspsn |
|- ( ph -> E. p e. ( Base ` P ) ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) |
| 22 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
| 23 |
7 22
|
syl |
|- ( ph -> R e. Ring ) |
| 24 |
23
|
adantr |
|- ( ( ph /\ p e. ( Base ` P ) ) -> R e. Ring ) |
| 25 |
|
simpr |
|- ( ( ph /\ p e. ( Base ` P ) ) -> p e. ( Base ` P ) ) |
| 26 |
8
|
adantr |
|- ( ( ph /\ p e. ( Base ` P ) ) -> F e. N ) |
| 27 |
1 6 10 11 12 5 24 25 26
|
ply1divalg3 |
|- ( ( ph /\ p e. ( Base ` P ) ) -> E! s e. ( Base ` P ) ( D ` ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) < ( D ` F ) ) |
| 28 |
27
|
adantr |
|- ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) -> E! s e. ( Base ` P ) ( D ` ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) < ( D ` F ) ) |
| 29 |
|
ovexd |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ s e. ( Base ` P ) ) -> ( p ( +g ` P ) ( s ( .r ` P ) F ) ) e. _V ) |
| 30 |
|
simpr |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ s e. ( Base ` P ) ) -> s e. ( Base ` P ) ) |
| 31 |
|
eqidd |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ s e. ( Base ` P ) ) -> ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) |
| 32 |
|
oveq1 |
|- ( y = s -> ( y ( .r ` P ) F ) = ( s ( .r ` P ) F ) ) |
| 33 |
32
|
oveq2d |
|- ( y = s -> ( p ( +g ` P ) ( y ( .r ` P ) F ) ) = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) |
| 34 |
33
|
eqeq2d |
|- ( y = s -> ( ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) <-> ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) ) |
| 35 |
34
|
rspcev |
|- ( ( s e. ( Base ` P ) /\ ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) -> E. y e. ( Base ` P ) ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) ) |
| 36 |
30 31 35
|
syl2anc |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ s e. ( Base ` P ) ) -> E. y e. ( Base ` P ) ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) ) |
| 37 |
|
eqeq1 |
|- ( z = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) -> ( z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) <-> ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) ) ) |
| 38 |
37
|
rexbidv |
|- ( z = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) -> ( E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) <-> E. y e. ( Base ` P ) ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) ) ) |
| 39 |
29 36 38
|
elabd |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ s e. ( Base ` P ) ) -> ( p ( +g ` P ) ( s ( .r ` P ) F ) ) e. { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) |
| 40 |
|
simplrr |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ s e. ( Base ` P ) ) -> Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) |
| 41 |
39 40
|
eleqtrrd |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ s e. ( Base ` P ) ) -> ( p ( +g ` P ) ( s ( .r ` P ) F ) ) e. Z ) |
| 42 |
|
simprr |
|- ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) -> Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) |
| 43 |
42
|
eqimssd |
|- ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) -> Z C_ { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) |
| 44 |
43
|
sselda |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ q e. Z ) -> q e. { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) |
| 45 |
|
eqeq1 |
|- ( z = q -> ( z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) <-> q = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) ) ) |
| 46 |
45
|
rexbidv |
|- ( z = q -> ( E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) <-> E. y e. ( Base ` P ) q = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) ) ) |
| 47 |
33
|
eqeq2d |
|- ( y = s -> ( q = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) <-> q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) ) |
| 48 |
47
|
cbvrexvw |
|- ( E. y e. ( Base ` P ) q = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) <-> E. s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) |
| 49 |
46 48
|
bitrdi |
|- ( z = q -> ( E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) <-> E. s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) ) |
| 50 |
49
|
elabg |
|- ( q e. { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } -> ( q e. { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } <-> E. s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) ) |
| 51 |
50
|
ibi |
|- ( q e. { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } -> E. s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) |
| 52 |
44 51
|
syl |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ q e. Z ) -> E. s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) |
| 53 |
|
eqtr2 |
|- ( ( q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) /\ q = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) ) -> ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) ) |
| 54 |
17
|
ringgrpd |
|- ( ph -> P e. Grp ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> P e. Grp ) |
| 56 |
17
|
adantr |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> P e. Ring ) |
| 57 |
|
simpr2 |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> s e. ( Base ` P ) ) |
| 58 |
19
|
adantr |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> F e. ( Base ` P ) ) |
| 59 |
10 12 56 57 58
|
ringcld |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> ( s ( .r ` P ) F ) e. ( Base ` P ) ) |
| 60 |
|
simpr3 |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> t e. ( Base ` P ) ) |
| 61 |
10 12 56 60 58
|
ringcld |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> ( t ( .r ` P ) F ) e. ( Base ` P ) ) |
| 62 |
|
simpr1 |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> p e. ( Base ` P ) ) |
| 63 |
10 11
|
grplcan |
|- ( ( P e. Grp /\ ( ( s ( .r ` P ) F ) e. ( Base ` P ) /\ ( t ( .r ` P ) F ) e. ( Base ` P ) /\ p e. ( Base ` P ) ) ) -> ( ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) <-> ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) ) |
| 64 |
55 59 61 62 63
|
syl13anc |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> ( ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) <-> ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) ) |
| 65 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 66 |
|
simplr2 |
|- ( ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) /\ ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) -> s e. ( Base ` P ) ) |
| 67 |
|
simplr3 |
|- ( ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) /\ ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) -> t e. ( Base ` P ) ) |
| 68 |
1 65 5
|
uc1pn0 |
|- ( F e. N -> F =/= ( 0g ` P ) ) |
| 69 |
8 68
|
syl |
|- ( ph -> F =/= ( 0g ` P ) ) |
| 70 |
19 69
|
eldifsnd |
|- ( ph -> F e. ( ( Base ` P ) \ { ( 0g ` P ) } ) ) |
| 71 |
70
|
ad2antrr |
|- ( ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) /\ ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) -> F e. ( ( Base ` P ) \ { ( 0g ` P ) } ) ) |
| 72 |
15
|
ad2antrr |
|- ( ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) /\ ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) -> P e. Domn ) |
| 73 |
|
simpr |
|- ( ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) /\ ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) -> ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) |
| 74 |
10 65 12 66 67 71 72 73
|
domnrcan |
|- ( ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) /\ ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) -> s = t ) |
| 75 |
74
|
ex |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> ( ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) -> s = t ) ) |
| 76 |
64 75
|
sylbid |
|- ( ( ph /\ ( p e. ( Base ` P ) /\ s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> ( ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) -> s = t ) ) |
| 77 |
76
|
3exp2 |
|- ( ph -> ( p e. ( Base ` P ) -> ( s e. ( Base ` P ) -> ( t e. ( Base ` P ) -> ( ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) -> s = t ) ) ) ) ) |
| 78 |
77
|
imp43 |
|- ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> ( ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) -> s = t ) ) |
| 79 |
53 78
|
syl5 |
|- ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( s e. ( Base ` P ) /\ t e. ( Base ` P ) ) ) -> ( ( q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) /\ q = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) ) -> s = t ) ) |
| 80 |
79
|
ralrimivva |
|- ( ( ph /\ p e. ( Base ` P ) ) -> A. s e. ( Base ` P ) A. t e. ( Base ` P ) ( ( q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) /\ q = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) ) -> s = t ) ) |
| 81 |
|
oveq1 |
|- ( s = t -> ( s ( .r ` P ) F ) = ( t ( .r ` P ) F ) ) |
| 82 |
81
|
oveq2d |
|- ( s = t -> ( p ( +g ` P ) ( s ( .r ` P ) F ) ) = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) ) |
| 83 |
82
|
eqeq2d |
|- ( s = t -> ( q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) <-> q = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) ) ) |
| 84 |
83
|
rmo4 |
|- ( E* s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) <-> A. s e. ( Base ` P ) A. t e. ( Base ` P ) ( ( q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) /\ q = ( p ( +g ` P ) ( t ( .r ` P ) F ) ) ) -> s = t ) ) |
| 85 |
80 84
|
sylibr |
|- ( ( ph /\ p e. ( Base ` P ) ) -> E* s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ q e. Z ) -> E* s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) |
| 87 |
|
reu5 |
|- ( E! s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) <-> ( E. s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) /\ E* s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) ) |
| 88 |
52 86 87
|
sylanbrc |
|- ( ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) /\ q e. Z ) -> E! s e. ( Base ` P ) q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) |
| 89 |
|
fveq2 |
|- ( q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) -> ( D ` q ) = ( D ` ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) ) |
| 90 |
89
|
breq1d |
|- ( q = ( p ( +g ` P ) ( s ( .r ` P ) F ) ) -> ( ( D ` q ) < ( D ` F ) <-> ( D ` ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) < ( D ` F ) ) ) |
| 91 |
41 88 90
|
reuxfr1ds |
|- ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) -> ( E! q e. Z ( D ` q ) < ( D ` F ) <-> E! s e. ( Base ` P ) ( D ` ( p ( +g ` P ) ( s ( .r ` P ) F ) ) ) < ( D ` F ) ) ) |
| 92 |
28 91
|
mpbird |
|- ( ( ( ph /\ p e. ( Base ` P ) ) /\ ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) ) -> E! q e. Z ( D ` q ) < ( D ` F ) ) |
| 93 |
92
|
ex |
|- ( ( ph /\ p e. ( Base ` P ) ) -> ( ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) -> E! q e. Z ( D ` q ) < ( D ` F ) ) ) |
| 94 |
93
|
reximdva |
|- ( ph -> ( E. p e. ( Base ` P ) ( Z = [ p ] ( P ~QG I ) /\ Z = { z | E. y e. ( Base ` P ) z = ( p ( +g ` P ) ( y ( .r ` P ) F ) ) } ) -> E. p e. ( Base ` P ) E! q e. Z ( D ` q ) < ( D ` F ) ) ) |
| 95 |
21 94
|
mpd |
|- ( ph -> E. p e. ( Base ` P ) E! q e. Z ( D ` q ) < ( D ` F ) ) |
| 96 |
|
id |
|- ( E! q e. Z ( D ` q ) < ( D ` F ) -> E! q e. Z ( D ` q ) < ( D ` F ) ) |
| 97 |
96
|
rexlimivw |
|- ( E. p e. ( Base ` P ) E! q e. Z ( D ` q ) < ( D ` F ) -> E! q e. Z ( D ` q ) < ( D ` F ) ) |
| 98 |
95 97
|
syl |
|- ( ph -> E! q e. Z ( D ` q ) < ( D ` F ) ) |