Step |
Hyp |
Ref |
Expression |
1 |
|
r1peuqus.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
r1peuqus.i |
⊢ 𝐼 = ( ( RSpan ‘ 𝑃 ) ‘ { 𝐹 } ) |
3 |
|
r1peuqus.t |
⊢ 𝑇 = ( 𝑃 /s ( 𝑃 ~QG 𝐼 ) ) |
4 |
|
r1peuqus.q |
⊢ 𝑄 = ( Base ‘ 𝑇 ) |
5 |
|
r1peuqus.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
6 |
|
r1peuqus.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
7 |
|
r1peuqus.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
8 |
|
r1peuqus.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑁 ) |
9 |
|
r1peuqus.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑄 ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
12 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
13 |
|
eqid |
⊢ ( 𝑃 ~QG 𝐼 ) = ( 𝑃 ~QG 𝐼 ) |
14 |
1
|
ply1domn |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Domn ) |
15 |
7 14
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Domn ) |
16 |
|
domnring |
⊢ ( 𝑃 ∈ Domn → 𝑃 ∈ Ring ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
18 |
1 10 5
|
uc1pcl |
⊢ ( 𝐹 ∈ 𝑁 → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
19 |
8 18
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
20 |
9 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝑇 ) ) |
21 |
10 11 12 13 3 2 17 19 20
|
ellcsrspsn |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) |
22 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
23 |
7 22
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 ∈ Ring ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝑝 ∈ ( Base ‘ 𝑃 ) ) |
26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝐹 ∈ 𝑁 ) |
27 |
1 6 10 11 12 5 24 25 26
|
ply1divalg3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) < ( 𝐷 ‘ 𝐹 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) < ( 𝐷 ‘ 𝐹 ) ) |
29 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∈ V ) |
30 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) ) |
31 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
32 |
|
oveq1 |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) |
33 |
32
|
oveq2d |
⊢ ( 𝑦 = 𝑠 → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
34 |
33
|
eqeq2d |
⊢ ( 𝑦 = 𝑠 → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
35 |
34
|
rspcev |
⊢ ( ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
36 |
30 31 35
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
37 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
38 |
37
|
rexbidv |
⊢ ( 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
39 |
29 36 38
|
elabd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
40 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
41 |
39 40
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∈ 𝑍 ) |
42 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
43 |
42
|
eqimssd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → 𝑍 ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
44 |
43
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞 ∈ 𝑍 ) → 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
45 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑞 → ( 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
46 |
45
|
rexbidv |
⊢ ( 𝑧 = 𝑞 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
47 |
33
|
eqeq2d |
⊢ ( 𝑦 = 𝑠 → ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
48 |
47
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
49 |
46 48
|
bitrdi |
⊢ ( 𝑧 = 𝑞 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
50 |
49
|
elabg |
⊢ ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } → ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
51 |
50
|
ibi |
⊢ ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } → ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
52 |
44 51
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞 ∈ 𝑍 ) → ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
53 |
|
eqtr2 |
⊢ ( ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
54 |
17
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑃 ∈ Grp ) |
56 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑃 ∈ Ring ) |
57 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) ) |
58 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
59 |
10 12 56 57 58
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
60 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑡 ∈ ( Base ‘ 𝑃 ) ) |
61 |
10 12 56 60 58
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
62 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑝 ∈ ( Base ‘ 𝑃 ) ) |
63 |
10 11
|
grplcan |
⊢ ( ( 𝑃 ∈ Grp ∧ ( ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
64 |
55 59 61 62 63
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
65 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
66 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) ) |
67 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑡 ∈ ( Base ‘ 𝑃 ) ) |
68 |
1 65 5
|
uc1pn0 |
⊢ ( 𝐹 ∈ 𝑁 → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
69 |
8 68
|
syl |
⊢ ( 𝜑 → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
70 |
19 69
|
eldifsnd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g ‘ 𝑃 ) } ) ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝐹 ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g ‘ 𝑃 ) } ) ) |
72 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑃 ∈ Domn ) |
73 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) |
74 |
10 65 12 66 67 71 72 73
|
domnrcan |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) |
75 |
74
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) → 𝑠 = 𝑡 ) ) |
76 |
64 75
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) ) |
77 |
76
|
3exp2 |
⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑃 ) → ( 𝑠 ∈ ( Base ‘ 𝑃 ) → ( 𝑡 ∈ ( Base ‘ 𝑃 ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) ) ) ) ) |
78 |
77
|
imp43 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) ) |
79 |
53 78
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) ) |
80 |
79
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∀ 𝑠 ∈ ( Base ‘ 𝑃 ) ∀ 𝑡 ∈ ( Base ‘ 𝑃 ) ( ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) ) |
81 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) |
82 |
81
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
83 |
82
|
eqeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
84 |
83
|
rmo4 |
⊢ ( ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∀ 𝑠 ∈ ( Base ‘ 𝑃 ) ∀ 𝑡 ∈ ( Base ‘ 𝑃 ) ( ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) ) |
85 |
80 84
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
86 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞 ∈ 𝑍 ) → ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
87 |
|
reu5 |
⊢ ( ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
88 |
52 86 87
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞 ∈ 𝑍 ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
89 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( 𝐷 ‘ 𝑞 ) = ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
90 |
89
|
breq1d |
⊢ ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ↔ ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) < ( 𝐷 ‘ 𝐹 ) ) ) |
91 |
41 88 90
|
reuxfr1ds |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → ( ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ↔ ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) < ( 𝐷 ‘ 𝐹 ) ) ) |
92 |
28 91
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |
93 |
92
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) ) |
94 |
93
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) ) |
95 |
21 94
|
mpd |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |
96 |
|
id |
⊢ ( ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |
97 |
96
|
rexlimivw |
⊢ ( ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |
98 |
95 97
|
syl |
⊢ ( 𝜑 → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |