| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r1peuqus.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
r1peuqus.i |
⊢ 𝐼 = ( ( RSpan ‘ 𝑃 ) ‘ { 𝐹 } ) |
| 3 |
|
r1peuqus.t |
⊢ 𝑇 = ( 𝑃 /s ( 𝑃 ~QG 𝐼 ) ) |
| 4 |
|
r1peuqus.q |
⊢ 𝑄 = ( Base ‘ 𝑇 ) |
| 5 |
|
r1peuqus.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
| 6 |
|
r1peuqus.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 7 |
|
r1peuqus.r |
⊢ ( 𝜑 → 𝑅 ∈ Domn ) |
| 8 |
|
r1peuqus.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑁 ) |
| 9 |
|
r1peuqus.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑄 ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 11 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
| 12 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 13 |
|
eqid |
⊢ ( 𝑃 ~QG 𝐼 ) = ( 𝑃 ~QG 𝐼 ) |
| 14 |
1
|
ply1domn |
⊢ ( 𝑅 ∈ Domn → 𝑃 ∈ Domn ) |
| 15 |
7 14
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Domn ) |
| 16 |
|
domnring |
⊢ ( 𝑃 ∈ Domn → 𝑃 ∈ Ring ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 18 |
1 10 5
|
uc1pcl |
⊢ ( 𝐹 ∈ 𝑁 → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
| 19 |
8 18
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
| 20 |
9 4
|
eleqtrdi |
⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝑇 ) ) |
| 21 |
10 11 12 13 3 2 17 19 20
|
ellcsrspsn |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) |
| 22 |
|
domnring |
⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ Ring ) |
| 23 |
7 22
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 ∈ Ring ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝑝 ∈ ( Base ‘ 𝑃 ) ) |
| 26 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝐹 ∈ 𝑁 ) |
| 27 |
1 6 10 11 12 5 24 25 26
|
ply1divalg3 |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) < ( 𝐷 ‘ 𝐹 ) ) |
| 28 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) < ( 𝐷 ‘ 𝐹 ) ) |
| 29 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∈ V ) |
| 30 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) ) |
| 31 |
|
eqidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 32 |
|
oveq1 |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝑦 = 𝑠 → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 34 |
33
|
eqeq2d |
⊢ ( 𝑦 = 𝑠 → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 35 |
34
|
rspcev |
⊢ ( ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 36 |
30 31 35
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 37 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 38 |
37
|
rexbidv |
⊢ ( 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 39 |
29 36 38
|
elabd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
| 40 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
| 41 |
39 40
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∈ 𝑍 ) |
| 42 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
| 43 |
42
|
eqimssd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → 𝑍 ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
| 44 |
43
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞 ∈ 𝑍 ) → 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) |
| 45 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑞 → ( 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 46 |
45
|
rexbidv |
⊢ ( 𝑧 = 𝑞 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 47 |
33
|
eqeq2d |
⊢ ( 𝑦 = 𝑠 → ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 48 |
47
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 49 |
46 48
|
bitrdi |
⊢ ( 𝑧 = 𝑞 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 50 |
49
|
elabg |
⊢ ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } → ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 51 |
50
|
ibi |
⊢ ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } → ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 52 |
44 51
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞 ∈ 𝑍 ) → ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 53 |
|
eqtr2 |
⊢ ( ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 54 |
17
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 55 |
54
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑃 ∈ Grp ) |
| 56 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑃 ∈ Ring ) |
| 57 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) ) |
| 58 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝐹 ∈ ( Base ‘ 𝑃 ) ) |
| 59 |
10 12 56 57 58
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
| 60 |
|
simpr3 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑡 ∈ ( Base ‘ 𝑃 ) ) |
| 61 |
10 12 56 60 58
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ) |
| 62 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑝 ∈ ( Base ‘ 𝑃 ) ) |
| 63 |
10 11
|
grplcan |
⊢ ( ( 𝑃 ∈ Grp ∧ ( ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 64 |
55 59 61 62 63
|
syl13anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 65 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 66 |
|
simplr2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) ) |
| 67 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑡 ∈ ( Base ‘ 𝑃 ) ) |
| 68 |
1 65 5
|
uc1pn0 |
⊢ ( 𝐹 ∈ 𝑁 → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
| 69 |
8 68
|
syl |
⊢ ( 𝜑 → 𝐹 ≠ ( 0g ‘ 𝑃 ) ) |
| 70 |
19 69
|
eldifsnd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g ‘ 𝑃 ) } ) ) |
| 71 |
70
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝐹 ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g ‘ 𝑃 ) } ) ) |
| 72 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑃 ∈ Domn ) |
| 73 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) |
| 74 |
10 65 12 66 67 71 72 73
|
domnrcan |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) |
| 75 |
74
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) → 𝑠 = 𝑡 ) ) |
| 76 |
64 75
|
sylbid |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) ) |
| 77 |
76
|
3exp2 |
⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑃 ) → ( 𝑠 ∈ ( Base ‘ 𝑃 ) → ( 𝑡 ∈ ( Base ‘ 𝑃 ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) ) ) ) ) |
| 78 |
77
|
imp43 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) ) |
| 79 |
53 78
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) ) |
| 80 |
79
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∀ 𝑠 ∈ ( Base ‘ 𝑃 ) ∀ 𝑡 ∈ ( Base ‘ 𝑃 ) ( ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) ) |
| 81 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) = ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) |
| 82 |
81
|
oveq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 83 |
82
|
eqeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 84 |
83
|
rmo4 |
⊢ ( ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ∀ 𝑠 ∈ ( Base ‘ 𝑃 ) ∀ 𝑡 ∈ ( Base ‘ 𝑃 ) ( ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑡 ( .r ‘ 𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) ) |
| 85 |
80 84
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 86 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞 ∈ 𝑍 ) → ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 87 |
|
reu5 |
⊢ ( ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ↔ ( ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ∧ ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 88 |
52 86 87
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞 ∈ 𝑍 ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) |
| 89 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( 𝐷 ‘ 𝑞 ) = ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) ) |
| 90 |
89
|
breq1d |
⊢ ( 𝑞 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) → ( ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ↔ ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) < ( 𝐷 ‘ 𝐹 ) ) ) |
| 91 |
41 88 90
|
reuxfr1ds |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → ( ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ↔ ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑠 ( .r ‘ 𝑃 ) 𝐹 ) ) ) < ( 𝐷 ‘ 𝐹 ) ) ) |
| 92 |
28 91
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) ) → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |
| 93 |
92
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) ) |
| 94 |
93
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g ‘ 𝑃 ) ( 𝑦 ( .r ‘ 𝑃 ) 𝐹 ) ) } ) → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) ) |
| 95 |
21 94
|
mpd |
⊢ ( 𝜑 → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |
| 96 |
|
id |
⊢ ( ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |
| 97 |
96
|
rexlimivw |
⊢ ( ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |
| 98 |
95 97
|
syl |
⊢ ( 𝜑 → ∃! 𝑞 ∈ 𝑍 ( 𝐷 ‘ 𝑞 ) < ( 𝐷 ‘ 𝐹 ) ) |