Metamath Proof Explorer


Theorem r1peuqusdeg1

Description: Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 . (Contributed by SN, 21-Jun-2025)

Ref Expression
Hypotheses r1peuqus.p 𝑃 = ( Poly1𝑅 )
r1peuqus.i 𝐼 = ( ( RSpan ‘ 𝑃 ) ‘ { 𝐹 } )
r1peuqus.t 𝑇 = ( 𝑃 /s ( 𝑃 ~QG 𝐼 ) )
r1peuqus.q 𝑄 = ( Base ‘ 𝑇 )
r1peuqus.n 𝑁 = ( Unic1p𝑅 )
r1peuqus.d 𝐷 = ( deg1𝑅 )
r1peuqus.r ( 𝜑𝑅 ∈ Domn )
r1peuqus.f ( 𝜑𝐹𝑁 )
r1peuqus.z ( 𝜑𝑍𝑄 )
Assertion r1peuqusdeg1 ( 𝜑 → ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) )

Proof

Step Hyp Ref Expression
1 r1peuqus.p 𝑃 = ( Poly1𝑅 )
2 r1peuqus.i 𝐼 = ( ( RSpan ‘ 𝑃 ) ‘ { 𝐹 } )
3 r1peuqus.t 𝑇 = ( 𝑃 /s ( 𝑃 ~QG 𝐼 ) )
4 r1peuqus.q 𝑄 = ( Base ‘ 𝑇 )
5 r1peuqus.n 𝑁 = ( Unic1p𝑅 )
6 r1peuqus.d 𝐷 = ( deg1𝑅 )
7 r1peuqus.r ( 𝜑𝑅 ∈ Domn )
8 r1peuqus.f ( 𝜑𝐹𝑁 )
9 r1peuqus.z ( 𝜑𝑍𝑄 )
10 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
11 eqid ( +g𝑃 ) = ( +g𝑃 )
12 eqid ( .r𝑃 ) = ( .r𝑃 )
13 eqid ( 𝑃 ~QG 𝐼 ) = ( 𝑃 ~QG 𝐼 )
14 1 ply1domn ( 𝑅 ∈ Domn → 𝑃 ∈ Domn )
15 7 14 syl ( 𝜑𝑃 ∈ Domn )
16 domnring ( 𝑃 ∈ Domn → 𝑃 ∈ Ring )
17 15 16 syl ( 𝜑𝑃 ∈ Ring )
18 1 10 5 uc1pcl ( 𝐹𝑁𝐹 ∈ ( Base ‘ 𝑃 ) )
19 8 18 syl ( 𝜑𝐹 ∈ ( Base ‘ 𝑃 ) )
20 9 4 eleqtrdi ( 𝜑𝑍 ∈ ( Base ‘ 𝑇 ) )
21 10 11 12 13 3 2 17 19 20 ellcsrspsn ( 𝜑 → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) )
22 domnring ( 𝑅 ∈ Domn → 𝑅 ∈ Ring )
23 7 22 syl ( 𝜑𝑅 ∈ Ring )
24 23 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝑅 ∈ Ring )
25 simpr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝑝 ∈ ( Base ‘ 𝑃 ) )
26 8 adantr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) → 𝐹𝑁 )
27 1 6 10 11 12 5 24 25 26 ply1divalg3 ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) < ( 𝐷𝐹 ) )
28 27 adantr ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) < ( 𝐷𝐹 ) )
29 ovexd ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ∈ V )
30 simpr ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) )
31 eqidd ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) )
32 oveq1 ( 𝑦 = 𝑠 → ( 𝑦 ( .r𝑃 ) 𝐹 ) = ( 𝑠 ( .r𝑃 ) 𝐹 ) )
33 32 oveq2d ( 𝑦 = 𝑠 → ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) )
34 33 eqeq2d ( 𝑦 = 𝑠 → ( ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ↔ ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) )
35 34 rspcev ( ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) )
36 30 31 35 syl2anc ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) )
37 eqeq1 ( 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) → ( 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ↔ ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ) )
38 37 rexbidv ( 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ) )
39 29 36 38 elabd ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } )
40 simplrr ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } )
41 39 40 eleqtrrd ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ∈ 𝑍 )
42 simprr ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) → 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } )
43 42 eqimssd ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) → 𝑍 ⊆ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } )
44 43 sselda ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞𝑍 ) → 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } )
45 eqeq1 ( 𝑧 = 𝑞 → ( 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ) )
46 45 rexbidv ( 𝑧 = 𝑞 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ↔ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ) )
47 33 eqeq2d ( 𝑦 = 𝑠 → ( 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) )
48 47 cbvrexvw ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) )
49 46 48 bitrdi ( 𝑧 = 𝑞 → ( ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) )
50 49 elabg ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } → ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ↔ ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) )
51 50 ibi ( 𝑞 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } → ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) )
52 44 51 syl ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞𝑍 ) → ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) )
53 eqtr2 ( ( 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) ) → ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) )
54 17 ringgrpd ( 𝜑𝑃 ∈ Grp )
55 54 adantr ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑃 ∈ Grp )
56 17 adantr ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑃 ∈ Ring )
57 simpr2 ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) )
58 19 adantr ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝐹 ∈ ( Base ‘ 𝑃 ) )
59 10 12 56 57 58 ringcld ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑠 ( .r𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) )
60 simpr3 ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑡 ∈ ( Base ‘ 𝑃 ) )
61 10 12 56 60 58 ringcld ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑡 ( .r𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) )
62 simpr1 ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → 𝑝 ∈ ( Base ‘ 𝑃 ) )
63 10 11 grplcan ( ( 𝑃 ∈ Grp ∧ ( ( 𝑠 ( .r𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑡 ( .r𝑃 ) 𝐹 ) ∈ ( Base ‘ 𝑃 ) ∧ 𝑝 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) ↔ ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) ) )
64 55 59 61 62 63 syl13anc ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) ↔ ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) ) )
65 eqid ( 0g𝑃 ) = ( 0g𝑃 )
66 simplr2 ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → 𝑠 ∈ ( Base ‘ 𝑃 ) )
67 simplr3 ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → 𝑡 ∈ ( Base ‘ 𝑃 ) )
68 1 65 5 uc1pn0 ( 𝐹𝑁𝐹 ≠ ( 0g𝑃 ) )
69 8 68 syl ( 𝜑𝐹 ≠ ( 0g𝑃 ) )
70 19 69 eldifsnd ( 𝜑𝐹 ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g𝑃 ) } ) )
71 70 ad2antrr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → 𝐹 ∈ ( ( Base ‘ 𝑃 ) ∖ { ( 0g𝑃 ) } ) )
72 15 ad2antrr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → 𝑃 ∈ Domn )
73 simpr ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) )
74 10 65 12 66 67 71 72 73 domnrcan ( ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) ∧ ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 )
75 74 ex ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) → 𝑠 = 𝑡 ) )
76 64 75 sylbid ( ( 𝜑 ∧ ( 𝑝 ∈ ( Base ‘ 𝑃 ) ∧ 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) )
77 76 3exp2 ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑃 ) → ( 𝑠 ∈ ( Base ‘ 𝑃 ) → ( 𝑡 ∈ ( Base ‘ 𝑃 ) → ( ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) ) ) ) )
78 77 imp43 ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) → 𝑠 = 𝑡 ) )
79 53 78 syl5 ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑠 ∈ ( Base ‘ 𝑃 ) ∧ 𝑡 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) )
80 79 ralrimivva ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∀ 𝑠 ∈ ( Base ‘ 𝑃 ) ∀ 𝑡 ∈ ( Base ‘ 𝑃 ) ( ( 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) )
81 oveq1 ( 𝑠 = 𝑡 → ( 𝑠 ( .r𝑃 ) 𝐹 ) = ( 𝑡 ( .r𝑃 ) 𝐹 ) )
82 81 oveq2d ( 𝑠 = 𝑡 → ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) )
83 82 eqeq2d ( 𝑠 = 𝑡 → ( 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ↔ 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) ) )
84 83 rmo4 ( ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ↔ ∀ 𝑠 ∈ ( Base ‘ 𝑃 ) ∀ 𝑡 ∈ ( Base ‘ 𝑃 ) ( ( 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ∧ 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑡 ( .r𝑃 ) 𝐹 ) ) ) → 𝑠 = 𝑡 ) )
85 80 84 sylibr ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) → ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) )
86 85 ad2antrr ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞𝑍 ) → ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) )
87 reu5 ( ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ↔ ( ∃ 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ∧ ∃* 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) )
88 52 86 87 sylanbrc ( ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) ∧ 𝑞𝑍 ) → ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) )
89 fveq2 ( 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) → ( 𝐷𝑞 ) = ( 𝐷 ‘ ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) )
90 89 breq1d ( 𝑞 = ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) → ( ( 𝐷𝑞 ) < ( 𝐷𝐹 ) ↔ ( 𝐷 ‘ ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) < ( 𝐷𝐹 ) ) )
91 41 88 90 reuxfr1ds ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) → ( ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) ↔ ∃! 𝑠 ∈ ( Base ‘ 𝑃 ) ( 𝐷 ‘ ( 𝑝 ( +g𝑃 ) ( 𝑠 ( .r𝑃 ) 𝐹 ) ) ) < ( 𝐷𝐹 ) ) )
92 28 91 mpbird ( ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) ∧ ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) ) → ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) )
93 92 ex ( ( 𝜑𝑝 ∈ ( Base ‘ 𝑃 ) ) → ( ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) → ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) ) )
94 93 reximdva ( 𝜑 → ( ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ( 𝑍 = [ 𝑝 ] ( 𝑃 ~QG 𝐼 ) ∧ 𝑍 = { 𝑧 ∣ ∃ 𝑦 ∈ ( Base ‘ 𝑃 ) 𝑧 = ( 𝑝 ( +g𝑃 ) ( 𝑦 ( .r𝑃 ) 𝐹 ) ) } ) → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) ) )
95 21 94 mpd ( 𝜑 → ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) )
96 id ( ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) → ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) )
97 96 rexlimivw ( ∃ 𝑝 ∈ ( Base ‘ 𝑃 ) ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) → ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) )
98 95 97 syl ( 𝜑 → ∃! 𝑞𝑍 ( 𝐷𝑞 ) < ( 𝐷𝐹 ) )