Step |
Hyp |
Ref |
Expression |
1 |
|
ellcsrspsn.b |
|- B = ( Base ` R ) |
2 |
|
ellcsrspsn.p |
|- .+ = ( +g ` R ) |
3 |
|
ellcsrspsn.t |
|- .x. = ( .r ` R ) |
4 |
|
ellcsrspsn.e |
|- .~ = ( R ~QG I ) |
5 |
|
ellcsrspsn.u |
|- U = ( R /s .~ ) |
6 |
|
ellcsrspsn.i |
|- I = ( ( RSpan ` R ) ` { M } ) |
7 |
|
ellcsrspsn.r |
|- ( ph -> R e. Ring ) |
8 |
|
ellcsrspsn.m |
|- ( ph -> M e. B ) |
9 |
|
ellcsrspsn.x |
|- ( ph -> X e. ( Base ` U ) ) |
10 |
4 5 1
|
quselbas |
|- ( ( R e. Ring /\ X e. ( Base ` U ) ) -> ( X e. ( Base ` U ) <-> E. x e. B X = [ x ] .~ ) ) |
11 |
7 9 10
|
syl2anc |
|- ( ph -> ( X e. ( Base ` U ) <-> E. x e. B X = [ x ] .~ ) ) |
12 |
9 11
|
mpbid |
|- ( ph -> E. x e. B X = [ x ] .~ ) |
13 |
7
|
ringgrpd |
|- ( ph -> R e. Grp ) |
14 |
13
|
adantr |
|- ( ( ph /\ x e. B ) -> R e. Grp ) |
15 |
|
eqid |
|- ( RSpan ` R ) = ( RSpan ` R ) |
16 |
8
|
snssd |
|- ( ph -> { M } C_ B ) |
17 |
15 1 7 16
|
rspssbasd |
|- ( ph -> ( ( RSpan ` R ) ` { M } ) C_ B ) |
18 |
6 17
|
eqsstrid |
|- ( ph -> I C_ B ) |
19 |
18
|
adantr |
|- ( ( ph /\ x e. B ) -> I C_ B ) |
20 |
|
simpr |
|- ( ( ph /\ x e. B ) -> x e. B ) |
21 |
1 4 2
|
eqglact |
|- ( ( R e. Grp /\ I C_ B /\ x e. B ) -> [ x ] .~ = ( ( i e. B |-> ( x .+ i ) ) " I ) ) |
22 |
14 19 20 21
|
syl3anc |
|- ( ( ph /\ x e. B ) -> [ x ] .~ = ( ( i e. B |-> ( x .+ i ) ) " I ) ) |
23 |
|
eqid |
|- ( i e. B |-> ( x .+ i ) ) = ( i e. B |-> ( x .+ i ) ) |
24 |
|
vex |
|- z e. _V |
25 |
24
|
a1i |
|- ( ( ph /\ x e. B ) -> z e. _V ) |
26 |
23 25 19
|
elimampt |
|- ( ( ph /\ x e. B ) -> ( z e. ( ( i e. B |-> ( x .+ i ) ) " I ) <-> E. i e. I z = ( x .+ i ) ) ) |
27 |
|
oveq2 |
|- ( i = ( y .x. M ) -> ( x .+ i ) = ( x .+ ( y .x. M ) ) ) |
28 |
27
|
eqeq2d |
|- ( i = ( y .x. M ) -> ( z = ( x .+ i ) <-> z = ( x .+ ( y .x. M ) ) ) ) |
29 |
6
|
eleq2i |
|- ( i e. I <-> i e. ( ( RSpan ` R ) ` { M } ) ) |
30 |
1 3 15
|
elrspsn |
|- ( ( R e. Ring /\ M e. B ) -> ( i e. ( ( RSpan ` R ) ` { M } ) <-> E. y e. B i = ( y .x. M ) ) ) |
31 |
7 8 30
|
syl2anc |
|- ( ph -> ( i e. ( ( RSpan ` R ) ` { M } ) <-> E. y e. B i = ( y .x. M ) ) ) |
32 |
29 31
|
bitrid |
|- ( ph -> ( i e. I <-> E. y e. B i = ( y .x. M ) ) ) |
33 |
32
|
adantr |
|- ( ( ph /\ x e. B ) -> ( i e. I <-> E. y e. B i = ( y .x. M ) ) ) |
34 |
|
ovexd |
|- ( ( ph /\ x e. B ) -> ( y .x. M ) e. _V ) |
35 |
28 33 34
|
rexxfr3d |
|- ( ( ph /\ x e. B ) -> ( E. i e. I z = ( x .+ i ) <-> E. y e. B z = ( x .+ ( y .x. M ) ) ) ) |
36 |
26 35
|
bitrd |
|- ( ( ph /\ x e. B ) -> ( z e. ( ( i e. B |-> ( x .+ i ) ) " I ) <-> E. y e. B z = ( x .+ ( y .x. M ) ) ) ) |
37 |
36
|
eqabdv |
|- ( ( ph /\ x e. B ) -> ( ( i e. B |-> ( x .+ i ) ) " I ) = { z | E. y e. B z = ( x .+ ( y .x. M ) ) } ) |
38 |
22 37
|
eqtrd |
|- ( ( ph /\ x e. B ) -> [ x ] .~ = { z | E. y e. B z = ( x .+ ( y .x. M ) ) } ) |
39 |
|
eqeq1 |
|- ( X = [ x ] .~ -> ( X = { z | E. y e. B z = ( x .+ ( y .x. M ) ) } <-> [ x ] .~ = { z | E. y e. B z = ( x .+ ( y .x. M ) ) } ) ) |
40 |
38 39
|
syl5ibrcom |
|- ( ( ph /\ x e. B ) -> ( X = [ x ] .~ -> X = { z | E. y e. B z = ( x .+ ( y .x. M ) ) } ) ) |
41 |
40
|
ancld |
|- ( ( ph /\ x e. B ) -> ( X = [ x ] .~ -> ( X = [ x ] .~ /\ X = { z | E. y e. B z = ( x .+ ( y .x. M ) ) } ) ) ) |
42 |
41
|
reximdva |
|- ( ph -> ( E. x e. B X = [ x ] .~ -> E. x e. B ( X = [ x ] .~ /\ X = { z | E. y e. B z = ( x .+ ( y .x. M ) ) } ) ) ) |
43 |
12 42
|
mpd |
|- ( ph -> E. x e. B ( X = [ x ] .~ /\ X = { z | E. y e. B z = ( x .+ ( y .x. M ) ) } ) ) |