Metamath Proof Explorer


Theorem rspssbasd

Description: The span of a set of ring elements is a set of ring elements. (Contributed by SN, 19-Jun-2025)

Ref Expression
Hypotheses rspssbasd.k
|- K = ( RSpan ` R )
rspssbasd.b
|- B = ( Base ` R )
rspssbasd.r
|- ( ph -> R e. Ring )
rspssbasd.g
|- ( ph -> G C_ B )
Assertion rspssbasd
|- ( ph -> ( K ` G ) C_ B )

Proof

Step Hyp Ref Expression
1 rspssbasd.k
 |-  K = ( RSpan ` R )
2 rspssbasd.b
 |-  B = ( Base ` R )
3 rspssbasd.r
 |-  ( ph -> R e. Ring )
4 rspssbasd.g
 |-  ( ph -> G C_ B )
5 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
6 1 2 5 rspcl
 |-  ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. ( LIdeal ` R ) )
7 3 4 6 syl2anc
 |-  ( ph -> ( K ` G ) e. ( LIdeal ` R ) )
8 2 5 lidlss
 |-  ( ( K ` G ) e. ( LIdeal ` R ) -> ( K ` G ) C_ B )
9 7 8 syl
 |-  ( ph -> ( K ` G ) C_ B )