Description: The span of a set of ring elements is a set of ring elements. (Contributed by SN, 19-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rspssbasd.k | |- K = ( RSpan ` R ) |
|
rspssbasd.b | |- B = ( Base ` R ) |
||
rspssbasd.r | |- ( ph -> R e. Ring ) |
||
rspssbasd.g | |- ( ph -> G C_ B ) |
||
Assertion | rspssbasd | |- ( ph -> ( K ` G ) C_ B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspssbasd.k | |- K = ( RSpan ` R ) |
|
2 | rspssbasd.b | |- B = ( Base ` R ) |
|
3 | rspssbasd.r | |- ( ph -> R e. Ring ) |
|
4 | rspssbasd.g | |- ( ph -> G C_ B ) |
|
5 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
6 | 1 2 5 | rspcl | |- ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. ( LIdeal ` R ) ) |
7 | 3 4 6 | syl2anc | |- ( ph -> ( K ` G ) e. ( LIdeal ` R ) ) |
8 | 2 5 | lidlss | |- ( ( K ` G ) e. ( LIdeal ` R ) -> ( K ` G ) C_ B ) |
9 | 7 8 | syl | |- ( ph -> ( K ` G ) C_ B ) |