Description: The span of a set of ring elements is a set of ring elements. (Contributed by SN, 19-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspssbasd.k | |- K = ( RSpan ` R ) | |
| rspssbasd.b | |- B = ( Base ` R ) | ||
| rspssbasd.r | |- ( ph -> R e. Ring ) | ||
| rspssbasd.g | |- ( ph -> G C_ B ) | ||
| Assertion | rspssbasd | |- ( ph -> ( K ` G ) C_ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspssbasd.k | |- K = ( RSpan ` R ) | |
| 2 | rspssbasd.b | |- B = ( Base ` R ) | |
| 3 | rspssbasd.r | |- ( ph -> R e. Ring ) | |
| 4 | rspssbasd.g | |- ( ph -> G C_ B ) | |
| 5 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) | |
| 6 | 1 2 5 | rspcl | |- ( ( R e. Ring /\ G C_ B ) -> ( K ` G ) e. ( LIdeal ` R ) ) | 
| 7 | 3 4 6 | syl2anc | |- ( ph -> ( K ` G ) e. ( LIdeal ` R ) ) | 
| 8 | 2 5 | lidlss | |- ( ( K ` G ) e. ( LIdeal ` R ) -> ( K ` G ) C_ B ) | 
| 9 | 7 8 | syl | |- ( ph -> ( K ` G ) C_ B ) |