Metamath Proof Explorer


Theorem ellcsrspsn

Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact and elrspsn . (Contributed by SN, 19-Jun-2025)

Ref Expression
Hypotheses ellcsrspsn.b B = Base R
ellcsrspsn.p + ˙ = + R
ellcsrspsn.t · ˙ = R
ellcsrspsn.e ˙ = R ~ QG I
ellcsrspsn.u U = R / 𝑠 ˙
ellcsrspsn.i I = RSpan R M
ellcsrspsn.r φ R Ring
ellcsrspsn.m φ M B
ellcsrspsn.x φ X Base U
Assertion ellcsrspsn φ x B X = x ˙ X = z | y B z = x + ˙ y · ˙ M

Proof

Step Hyp Ref Expression
1 ellcsrspsn.b B = Base R
2 ellcsrspsn.p + ˙ = + R
3 ellcsrspsn.t · ˙ = R
4 ellcsrspsn.e ˙ = R ~ QG I
5 ellcsrspsn.u U = R / 𝑠 ˙
6 ellcsrspsn.i I = RSpan R M
7 ellcsrspsn.r φ R Ring
8 ellcsrspsn.m φ M B
9 ellcsrspsn.x φ X Base U
10 4 5 1 quselbas R Ring X Base U X Base U x B X = x ˙
11 7 9 10 syl2anc φ X Base U x B X = x ˙
12 9 11 mpbid φ x B X = x ˙
13 7 ringgrpd φ R Grp
14 13 adantr φ x B R Grp
15 eqid RSpan R = RSpan R
16 8 snssd φ M B
17 15 1 7 16 rspssbasd φ RSpan R M B
18 6 17 eqsstrid φ I B
19 18 adantr φ x B I B
20 simpr φ x B x B
21 1 4 2 eqglact R Grp I B x B x ˙ = i B x + ˙ i I
22 14 19 20 21 syl3anc φ x B x ˙ = i B x + ˙ i I
23 eqid i B x + ˙ i = i B x + ˙ i
24 vex z V
25 24 a1i φ x B z V
26 23 25 19 elimampt φ x B z i B x + ˙ i I i I z = x + ˙ i
27 oveq2 i = y · ˙ M x + ˙ i = x + ˙ y · ˙ M
28 27 eqeq2d i = y · ˙ M z = x + ˙ i z = x + ˙ y · ˙ M
29 6 eleq2i i I i RSpan R M
30 1 3 15 elrspsn R Ring M B i RSpan R M y B i = y · ˙ M
31 7 8 30 syl2anc φ i RSpan R M y B i = y · ˙ M
32 29 31 bitrid φ i I y B i = y · ˙ M
33 32 adantr φ x B i I y B i = y · ˙ M
34 ovexd φ x B y · ˙ M V
35 28 33 34 rexxfr3d φ x B i I z = x + ˙ i y B z = x + ˙ y · ˙ M
36 26 35 bitrd φ x B z i B x + ˙ i I y B z = x + ˙ y · ˙ M
37 36 eqabdv φ x B i B x + ˙ i I = z | y B z = x + ˙ y · ˙ M
38 22 37 eqtrd φ x B x ˙ = z | y B z = x + ˙ y · ˙ M
39 eqeq1 X = x ˙ X = z | y B z = x + ˙ y · ˙ M x ˙ = z | y B z = x + ˙ y · ˙ M
40 38 39 syl5ibrcom φ x B X = x ˙ X = z | y B z = x + ˙ y · ˙ M
41 40 ancld φ x B X = x ˙ X = x ˙ X = z | y B z = x + ˙ y · ˙ M
42 41 reximdva φ x B X = x ˙ x B X = x ˙ X = z | y B z = x + ˙ y · ˙ M
43 12 42 mpd φ x B X = x ˙ X = z | y B z = x + ˙ y · ˙ M