Metamath Proof Explorer


Theorem rexxfr3d

Description: Transfer existential quantification from a variable x to another variable y contained in expression A . (Contributed by SN, 20-Jun-2025)

Ref Expression
Hypotheses rexxfr3d.s
|- ( x = X -> ( ps <-> ch ) )
rexxfr3d.x
|- ( ph -> ( x e. A <-> E. y e. B x = X ) )
rexxfr3d.a
|- ( ph -> X e. V )
Assertion rexxfr3d
|- ( ph -> ( E. x e. A ps <-> E. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 rexxfr3d.s
 |-  ( x = X -> ( ps <-> ch ) )
2 rexxfr3d.x
 |-  ( ph -> ( x e. A <-> E. y e. B x = X ) )
3 rexxfr3d.a
 |-  ( ph -> X e. V )
4 3 adantr
 |-  ( ( ph /\ y e. B ) -> X e. V )
5 1 adantl
 |-  ( ( ph /\ x = X ) -> ( ps <-> ch ) )
6 4 2 5 rexxfr2d
 |-  ( ph -> ( E. x e. A ps <-> E. y e. B ch ) )