Description: Transfer existential quantification from a variable x to another variable y contained in expression A . (Contributed by SN, 20-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rexxfr3d.s | |- ( x = X -> ( ps <-> ch ) ) |
|
rexxfr3d.x | |- ( ph -> ( x e. A <-> E. y e. B x = X ) ) |
||
rexxfr3d.a | |- ( ph -> X e. V ) |
||
Assertion | rexxfr3d | |- ( ph -> ( E. x e. A ps <-> E. y e. B ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexxfr3d.s | |- ( x = X -> ( ps <-> ch ) ) |
|
2 | rexxfr3d.x | |- ( ph -> ( x e. A <-> E. y e. B x = X ) ) |
|
3 | rexxfr3d.a | |- ( ph -> X e. V ) |
|
4 | 3 | adantr | |- ( ( ph /\ y e. B ) -> X e. V ) |
5 | 1 | adantl | |- ( ( ph /\ x = X ) -> ( ps <-> ch ) ) |
6 | 4 2 5 | rexxfr2d | |- ( ph -> ( E. x e. A ps <-> E. y e. B ch ) ) |