Metamath Proof Explorer


Theorem rexxfr3dALT

Description: Longer proof of rexxfr3d using ax-11 instead of ax-12 , without the disjoint variable condition A x y . (Contributed by SN, 19-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rexxfr3dALT.s
|- ( x = X -> ( ps <-> ch ) )
rexxfr3dALT.x
|- ( ph -> ( x e. A <-> E. y e. B x = X ) )
rexxfr3dALT.a
|- ( ph -> X e. V )
Assertion rexxfr3dALT
|- ( ph -> ( E. x e. A ps <-> E. y e. B ch ) )

Proof

Step Hyp Ref Expression
1 rexxfr3dALT.s
 |-  ( x = X -> ( ps <-> ch ) )
2 rexxfr3dALT.x
 |-  ( ph -> ( x e. A <-> E. y e. B x = X ) )
3 rexxfr3dALT.a
 |-  ( ph -> X e. V )
4 2 anbi1d
 |-  ( ph -> ( ( x e. A /\ ps ) <-> ( E. y e. B x = X /\ ps ) ) )
5 1 pm5.32i
 |-  ( ( x = X /\ ps ) <-> ( x = X /\ ch ) )
6 5 rexbii
 |-  ( E. y e. B ( x = X /\ ps ) <-> E. y e. B ( x = X /\ ch ) )
7 r19.41v
 |-  ( E. y e. B ( x = X /\ ps ) <-> ( E. y e. B x = X /\ ps ) )
8 6 7 bitr3i
 |-  ( E. y e. B ( x = X /\ ch ) <-> ( E. y e. B x = X /\ ps ) )
9 4 8 bitr4di
 |-  ( ph -> ( ( x e. A /\ ps ) <-> E. y e. B ( x = X /\ ch ) ) )
10 9 exbidv
 |-  ( ph -> ( E. x ( x e. A /\ ps ) <-> E. x E. y e. B ( x = X /\ ch ) ) )
11 df-rex
 |-  ( E. x e. A ps <-> E. x ( x e. A /\ ps ) )
12 19.41v
 |-  ( E. x ( x = X /\ ch ) <-> ( E. x x = X /\ ch ) )
13 12 rexbii
 |-  ( E. y e. B E. x ( x = X /\ ch ) <-> E. y e. B ( E. x x = X /\ ch ) )
14 rexcom4
 |-  ( E. y e. B E. x ( x = X /\ ch ) <-> E. x E. y e. B ( x = X /\ ch ) )
15 13 14 bitr3i
 |-  ( E. y e. B ( E. x x = X /\ ch ) <-> E. x E. y e. B ( x = X /\ ch ) )
16 10 11 15 3bitr4g
 |-  ( ph -> ( E. x e. A ps <-> E. y e. B ( E. x x = X /\ ch ) ) )
17 elisset
 |-  ( X e. V -> E. x x = X )
18 3 17 syl
 |-  ( ph -> E. x x = X )
19 18 biantrurd
 |-  ( ph -> ( ch <-> ( E. x x = X /\ ch ) ) )
20 19 rexbidv
 |-  ( ph -> ( E. y e. B ch <-> E. y e. B ( E. x x = X /\ ch ) ) )
21 16 20 bitr4d
 |-  ( ph -> ( E. x e. A ps <-> E. y e. B ch ) )