Metamath Proof Explorer


Theorem rexxfr3dALT

Description: Longer proof of rexxfr3d using ax-11 instead of ax-12 , without the disjoint variable condition A x y . (Contributed by SN, 19-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rexxfr3dALT.s x = X ψ χ
rexxfr3dALT.x φ x A y B x = X
rexxfr3dALT.a φ X V
Assertion rexxfr3dALT φ x A ψ y B χ

Proof

Step Hyp Ref Expression
1 rexxfr3dALT.s x = X ψ χ
2 rexxfr3dALT.x φ x A y B x = X
3 rexxfr3dALT.a φ X V
4 2 anbi1d φ x A ψ y B x = X ψ
5 1 pm5.32i x = X ψ x = X χ
6 5 rexbii y B x = X ψ y B x = X χ
7 r19.41v y B x = X ψ y B x = X ψ
8 6 7 bitr3i y B x = X χ y B x = X ψ
9 4 8 bitr4di φ x A ψ y B x = X χ
10 9 exbidv φ x x A ψ x y B x = X χ
11 df-rex x A ψ x x A ψ
12 19.41v x x = X χ x x = X χ
13 12 rexbii y B x x = X χ y B x x = X χ
14 rexcom4 y B x x = X χ x y B x = X χ
15 13 14 bitr3i y B x x = X χ x y B x = X χ
16 10 11 15 3bitr4g φ x A ψ y B x x = X χ
17 elisset X V x x = X
18 3 17 syl φ x x = X
19 18 biantrurd φ χ x x = X χ
20 19 rexbidv φ y B χ y B x x = X χ
21 16 20 bitr4d φ x A ψ y B χ