Metamath Proof Explorer


Theorem rexxfr3dALT

Description: Longer proof of rexxfr3d using ax-11 instead of ax-12 , without the disjoint variable condition A x y . (Contributed by SN, 19-Jun-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rexxfr3dALT.s ( 𝑥 = 𝑋 → ( 𝜓𝜒 ) )
rexxfr3dALT.x ( 𝜑 → ( 𝑥𝐴 ↔ ∃ 𝑦𝐵 𝑥 = 𝑋 ) )
rexxfr3dALT.a ( 𝜑𝑋𝑉 )
Assertion rexxfr3dALT ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑦𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexxfr3dALT.s ( 𝑥 = 𝑋 → ( 𝜓𝜒 ) )
2 rexxfr3dALT.x ( 𝜑 → ( 𝑥𝐴 ↔ ∃ 𝑦𝐵 𝑥 = 𝑋 ) )
3 rexxfr3dALT.a ( 𝜑𝑋𝑉 )
4 2 anbi1d ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( ∃ 𝑦𝐵 𝑥 = 𝑋𝜓 ) ) )
5 1 pm5.32i ( ( 𝑥 = 𝑋𝜓 ) ↔ ( 𝑥 = 𝑋𝜒 ) )
6 5 rexbii ( ∃ 𝑦𝐵 ( 𝑥 = 𝑋𝜓 ) ↔ ∃ 𝑦𝐵 ( 𝑥 = 𝑋𝜒 ) )
7 r19.41v ( ∃ 𝑦𝐵 ( 𝑥 = 𝑋𝜓 ) ↔ ( ∃ 𝑦𝐵 𝑥 = 𝑋𝜓 ) )
8 6 7 bitr3i ( ∃ 𝑦𝐵 ( 𝑥 = 𝑋𝜒 ) ↔ ( ∃ 𝑦𝐵 𝑥 = 𝑋𝜓 ) )
9 4 8 bitr4di ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ∃ 𝑦𝐵 ( 𝑥 = 𝑋𝜒 ) ) )
10 9 exbidv ( 𝜑 → ( ∃ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃ 𝑥𝑦𝐵 ( 𝑥 = 𝑋𝜒 ) ) )
11 df-rex ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
12 19.41v ( ∃ 𝑥 ( 𝑥 = 𝑋𝜒 ) ↔ ( ∃ 𝑥 𝑥 = 𝑋𝜒 ) )
13 12 rexbii ( ∃ 𝑦𝐵𝑥 ( 𝑥 = 𝑋𝜒 ) ↔ ∃ 𝑦𝐵 ( ∃ 𝑥 𝑥 = 𝑋𝜒 ) )
14 rexcom4 ( ∃ 𝑦𝐵𝑥 ( 𝑥 = 𝑋𝜒 ) ↔ ∃ 𝑥𝑦𝐵 ( 𝑥 = 𝑋𝜒 ) )
15 13 14 bitr3i ( ∃ 𝑦𝐵 ( ∃ 𝑥 𝑥 = 𝑋𝜒 ) ↔ ∃ 𝑥𝑦𝐵 ( 𝑥 = 𝑋𝜒 ) )
16 10 11 15 3bitr4g ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑦𝐵 ( ∃ 𝑥 𝑥 = 𝑋𝜒 ) ) )
17 elisset ( 𝑋𝑉 → ∃ 𝑥 𝑥 = 𝑋 )
18 3 17 syl ( 𝜑 → ∃ 𝑥 𝑥 = 𝑋 )
19 18 biantrurd ( 𝜑 → ( 𝜒 ↔ ( ∃ 𝑥 𝑥 = 𝑋𝜒 ) ) )
20 19 rexbidv ( 𝜑 → ( ∃ 𝑦𝐵 𝜒 ↔ ∃ 𝑦𝐵 ( ∃ 𝑥 𝑥 = 𝑋𝜒 ) ) )
21 16 20 bitr4d ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑦𝐵 𝜒 ) )