Step |
Hyp |
Ref |
Expression |
1 |
|
rexxfr3dALT.s |
⊢ ( 𝑥 = 𝑋 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
rexxfr3dALT.x |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) ) |
3 |
|
rexxfr3dALT.a |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
2
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓 ) ) ) |
5 |
1
|
pm5.32i |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝜓 ) ↔ ( 𝑥 = 𝑋 ∧ 𝜒 ) ) |
6 |
5
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) |
7 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓 ) ) |
8 |
6 7
|
bitr3i |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓 ) ) |
9 |
4 8
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
10 |
9
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
11 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
12 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) |
13 |
12
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) |
14 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) |
15 |
13 14
|
bitr3i |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) |
16 |
10 11 15
|
3bitr4g |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
17 |
|
elisset |
⊢ ( 𝑋 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝑋 ) |
18 |
3 17
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝑋 ) |
19 |
18
|
biantrurd |
⊢ ( 𝜑 → ( 𝜒 ↔ ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 𝜒 ↔ ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
21 |
16 20
|
bitr4d |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |