| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexxfr3dALT.s |
⊢ ( 𝑥 = 𝑋 → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
rexxfr3dALT.x |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ) ) |
| 3 |
|
rexxfr3dALT.a |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 4 |
2
|
anbi1d |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓 ) ) ) |
| 5 |
1
|
pm5.32i |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝜓 ) ↔ ( 𝑥 = 𝑋 ∧ 𝜒 ) ) |
| 6 |
5
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) |
| 7 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓 ) ) |
| 8 |
6 7
|
bitr3i |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓 ) ) |
| 9 |
4 8
|
bitr4di |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
| 10 |
9
|
exbidv |
⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
| 11 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) |
| 12 |
|
19.41v |
⊢ ( ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) |
| 13 |
12
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) |
| 14 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑥 ( 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) |
| 15 |
13 14
|
bitr3i |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ↔ ∃ 𝑥 ∃ 𝑦 ∈ 𝐵 ( 𝑥 = 𝑋 ∧ 𝜒 ) ) |
| 16 |
10 11 15
|
3bitr4g |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
| 17 |
|
elisset |
⊢ ( 𝑋 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝑋 ) |
| 18 |
3 17
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 = 𝑋 ) |
| 19 |
18
|
biantrurd |
⊢ ( 𝜑 → ( 𝜒 ↔ ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
| 20 |
19
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 𝜒 ↔ ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑥 𝑥 = 𝑋 ∧ 𝜒 ) ) ) |
| 21 |
16 20
|
bitr4d |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |