| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexxfr3dALT.s | ⊢ ( 𝑥  =  𝑋  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 |  | rexxfr3dALT.x | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  ↔  ∃ 𝑦  ∈  𝐵 𝑥  =  𝑋 ) ) | 
						
							| 3 |  | rexxfr3dALT.a | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 4 | 2 | anbi1d | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ( ∃ 𝑦  ∈  𝐵 𝑥  =  𝑋  ∧  𝜓 ) ) ) | 
						
							| 5 | 1 | pm5.32i | ⊢ ( ( 𝑥  =  𝑋  ∧  𝜓 )  ↔  ( 𝑥  =  𝑋  ∧  𝜒 ) ) | 
						
							| 6 | 5 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝜓 )  ↔  ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝜒 ) ) | 
						
							| 7 |  | r19.41v | ⊢ ( ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝜓 )  ↔  ( ∃ 𝑦  ∈  𝐵 𝑥  =  𝑋  ∧  𝜓 ) ) | 
						
							| 8 | 6 7 | bitr3i | ⊢ ( ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝜒 )  ↔  ( ∃ 𝑦  ∈  𝐵 𝑥  =  𝑋  ∧  𝜓 ) ) | 
						
							| 9 | 4 8 | bitr4di | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝜒 ) ) ) | 
						
							| 10 | 9 | exbidv | ⊢ ( 𝜑  →  ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝜒 ) ) ) | 
						
							| 11 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜓 ) ) | 
						
							| 12 |  | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝑋  ∧  𝜒 )  ↔  ( ∃ 𝑥 𝑥  =  𝑋  ∧  𝜒 ) ) | 
						
							| 13 | 12 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥 ( 𝑥  =  𝑋  ∧  𝜒 )  ↔  ∃ 𝑦  ∈  𝐵 ( ∃ 𝑥 𝑥  =  𝑋  ∧  𝜒 ) ) | 
						
							| 14 |  | rexcom4 | ⊢ ( ∃ 𝑦  ∈  𝐵 ∃ 𝑥 ( 𝑥  =  𝑋  ∧  𝜒 )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝜒 ) ) | 
						
							| 15 | 13 14 | bitr3i | ⊢ ( ∃ 𝑦  ∈  𝐵 ( ∃ 𝑥 𝑥  =  𝑋  ∧  𝜒 )  ↔  ∃ 𝑥 ∃ 𝑦  ∈  𝐵 ( 𝑥  =  𝑋  ∧  𝜒 ) ) | 
						
							| 16 | 10 11 15 | 3bitr4g | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑦  ∈  𝐵 ( ∃ 𝑥 𝑥  =  𝑋  ∧  𝜒 ) ) ) | 
						
							| 17 |  | elisset | ⊢ ( 𝑋  ∈  𝑉  →  ∃ 𝑥 𝑥  =  𝑋 ) | 
						
							| 18 | 3 17 | syl | ⊢ ( 𝜑  →  ∃ 𝑥 𝑥  =  𝑋 ) | 
						
							| 19 | 18 | biantrurd | ⊢ ( 𝜑  →  ( 𝜒  ↔  ( ∃ 𝑥 𝑥  =  𝑋  ∧  𝜒 ) ) ) | 
						
							| 20 | 19 | rexbidv | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  𝐵 𝜒  ↔  ∃ 𝑦  ∈  𝐵 ( ∃ 𝑥 𝑥  =  𝑋  ∧  𝜒 ) ) ) | 
						
							| 21 | 16 20 | bitr4d | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑦  ∈  𝐵 𝜒 ) ) |