| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elimampt.f |
|- F = ( x e. A |-> B ) |
| 2 |
|
elimampt.c |
|- ( ph -> C e. W ) |
| 3 |
|
elimampt.d |
|- ( ph -> D C_ A ) |
| 4 |
|
df-ima |
|- ( F " D ) = ran ( F |` D ) |
| 5 |
4
|
eleq2i |
|- ( C e. ( F " D ) <-> C e. ran ( F |` D ) ) |
| 6 |
1
|
reseq1i |
|- ( F |` D ) = ( ( x e. A |-> B ) |` D ) |
| 7 |
|
resmpt |
|- ( D C_ A -> ( ( x e. A |-> B ) |` D ) = ( x e. D |-> B ) ) |
| 8 |
6 7
|
eqtrid |
|- ( D C_ A -> ( F |` D ) = ( x e. D |-> B ) ) |
| 9 |
8
|
rneqd |
|- ( D C_ A -> ran ( F |` D ) = ran ( x e. D |-> B ) ) |
| 10 |
9
|
eleq2d |
|- ( D C_ A -> ( C e. ran ( F |` D ) <-> C e. ran ( x e. D |-> B ) ) ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( C e. ran ( F |` D ) <-> C e. ran ( x e. D |-> B ) ) ) |
| 12 |
|
eqid |
|- ( x e. D |-> B ) = ( x e. D |-> B ) |
| 13 |
12
|
elrnmpt |
|- ( C e. W -> ( C e. ran ( x e. D |-> B ) <-> E. x e. D C = B ) ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( C e. ran ( x e. D |-> B ) <-> E. x e. D C = B ) ) |
| 15 |
11 14
|
bitrd |
|- ( ph -> ( C e. ran ( F |` D ) <-> E. x e. D C = B ) ) |
| 16 |
5 15
|
bitrid |
|- ( ph -> ( C e. ( F " D ) <-> E. x e. D C = B ) ) |