Step |
Hyp |
Ref |
Expression |
1 |
|
elimampt.f |
|- F = ( x e. A |-> B ) |
2 |
|
elimampt.c |
|- ( ph -> C e. W ) |
3 |
|
elimampt.d |
|- ( ph -> D C_ A ) |
4 |
|
df-ima |
|- ( F " D ) = ran ( F |` D ) |
5 |
4
|
eleq2i |
|- ( C e. ( F " D ) <-> C e. ran ( F |` D ) ) |
6 |
1
|
reseq1i |
|- ( F |` D ) = ( ( x e. A |-> B ) |` D ) |
7 |
|
resmpt |
|- ( D C_ A -> ( ( x e. A |-> B ) |` D ) = ( x e. D |-> B ) ) |
8 |
6 7
|
eqtrid |
|- ( D C_ A -> ( F |` D ) = ( x e. D |-> B ) ) |
9 |
8
|
rneqd |
|- ( D C_ A -> ran ( F |` D ) = ran ( x e. D |-> B ) ) |
10 |
9
|
eleq2d |
|- ( D C_ A -> ( C e. ran ( F |` D ) <-> C e. ran ( x e. D |-> B ) ) ) |
11 |
3 10
|
syl |
|- ( ph -> ( C e. ran ( F |` D ) <-> C e. ran ( x e. D |-> B ) ) ) |
12 |
|
eqid |
|- ( x e. D |-> B ) = ( x e. D |-> B ) |
13 |
12
|
elrnmpt |
|- ( C e. W -> ( C e. ran ( x e. D |-> B ) <-> E. x e. D C = B ) ) |
14 |
2 13
|
syl |
|- ( ph -> ( C e. ran ( x e. D |-> B ) <-> E. x e. D C = B ) ) |
15 |
11 14
|
bitrd |
|- ( ph -> ( C e. ran ( F |` D ) <-> E. x e. D C = B ) ) |
16 |
5 15
|
syl5bb |
|- ( ph -> ( C e. ( F " D ) <-> E. x e. D C = B ) ) |