| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rxp11d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | rxp11d.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 3 |  | rxp11d.3 | ⊢ ( 𝜑  →  𝐶  ∈  ℝ ) | 
						
							| 4 |  | rxp11d.4 | ⊢ ( 𝜑  →  𝐶  ≠  0 ) | 
						
							| 5 |  | rxp11d.5 | ⊢ ( 𝜑  →  ( 𝐴 ↑𝑐 𝐶 )  =  ( 𝐵 ↑𝑐 𝐶 ) ) | 
						
							| 6 | 1 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 7 | 6 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 8 | 2 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 9 | 8 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 10 | 3 | recnd | ⊢ ( 𝜑  →  𝐶  ∈  ℂ ) | 
						
							| 11 | 5 | fveq2d | ⊢ ( 𝜑  →  ( log ‘ ( 𝐴 ↑𝑐 𝐶 ) )  =  ( log ‘ ( 𝐵 ↑𝑐 𝐶 ) ) ) | 
						
							| 12 | 1 3 | logcxpd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐴 ↑𝑐 𝐶 ) )  =  ( 𝐶  ·  ( log ‘ 𝐴 ) ) ) | 
						
							| 13 | 2 3 | logcxpd | ⊢ ( 𝜑  →  ( log ‘ ( 𝐵 ↑𝑐 𝐶 ) )  =  ( 𝐶  ·  ( log ‘ 𝐵 ) ) ) | 
						
							| 14 | 11 12 13 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝐶  ·  ( log ‘ 𝐴 ) )  =  ( 𝐶  ·  ( log ‘ 𝐵 ) ) ) | 
						
							| 15 | 7 9 10 4 14 | mulcanad | ⊢ ( 𝜑  →  ( log ‘ 𝐴 )  =  ( log ‘ 𝐵 ) ) | 
						
							| 16 | 1 2 | rplog11d | ⊢ ( 𝜑  →  ( ( log ‘ 𝐴 )  =  ( log ‘ 𝐵 )  ↔  𝐴  =  𝐵 ) ) | 
						
							| 17 | 15 16 | mpbid | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) |