| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rxp11d.1 |
|- ( ph -> A e. RR+ ) |
| 2 |
|
rxp11d.2 |
|- ( ph -> B e. RR+ ) |
| 3 |
|
rxp11d.3 |
|- ( ph -> C e. RR ) |
| 4 |
|
rxp11d.4 |
|- ( ph -> C =/= 0 ) |
| 5 |
|
rxp11d.5 |
|- ( ph -> ( A ^c C ) = ( B ^c C ) ) |
| 6 |
1
|
relogcld |
|- ( ph -> ( log ` A ) e. RR ) |
| 7 |
6
|
recnd |
|- ( ph -> ( log ` A ) e. CC ) |
| 8 |
2
|
relogcld |
|- ( ph -> ( log ` B ) e. RR ) |
| 9 |
8
|
recnd |
|- ( ph -> ( log ` B ) e. CC ) |
| 10 |
3
|
recnd |
|- ( ph -> C e. CC ) |
| 11 |
5
|
fveq2d |
|- ( ph -> ( log ` ( A ^c C ) ) = ( log ` ( B ^c C ) ) ) |
| 12 |
1 3
|
logcxpd |
|- ( ph -> ( log ` ( A ^c C ) ) = ( C x. ( log ` A ) ) ) |
| 13 |
2 3
|
logcxpd |
|- ( ph -> ( log ` ( B ^c C ) ) = ( C x. ( log ` B ) ) ) |
| 14 |
11 12 13
|
3eqtr3d |
|- ( ph -> ( C x. ( log ` A ) ) = ( C x. ( log ` B ) ) ) |
| 15 |
7 9 10 4 14
|
mulcanad |
|- ( ph -> ( log ` A ) = ( log ` B ) ) |
| 16 |
1 2
|
rplog11d |
|- ( ph -> ( ( log ` A ) = ( log ` B ) <-> A = B ) ) |
| 17 |
15 16
|
mpbid |
|- ( ph -> A = B ) |