| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rxp11d.1 |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | rxp11d.2 |  |-  ( ph -> B e. RR+ ) | 
						
							| 3 |  | rxp11d.3 |  |-  ( ph -> C e. RR ) | 
						
							| 4 |  | rxp11d.4 |  |-  ( ph -> C =/= 0 ) | 
						
							| 5 |  | rxp11d.5 |  |-  ( ph -> ( A ^c C ) = ( B ^c C ) ) | 
						
							| 6 | 1 | relogcld |  |-  ( ph -> ( log ` A ) e. RR ) | 
						
							| 7 | 6 | recnd |  |-  ( ph -> ( log ` A ) e. CC ) | 
						
							| 8 | 2 | relogcld |  |-  ( ph -> ( log ` B ) e. RR ) | 
						
							| 9 | 8 | recnd |  |-  ( ph -> ( log ` B ) e. CC ) | 
						
							| 10 | 3 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 11 | 5 | fveq2d |  |-  ( ph -> ( log ` ( A ^c C ) ) = ( log ` ( B ^c C ) ) ) | 
						
							| 12 | 1 3 | logcxpd |  |-  ( ph -> ( log ` ( A ^c C ) ) = ( C x. ( log ` A ) ) ) | 
						
							| 13 | 2 3 | logcxpd |  |-  ( ph -> ( log ` ( B ^c C ) ) = ( C x. ( log ` B ) ) ) | 
						
							| 14 | 11 12 13 | 3eqtr3d |  |-  ( ph -> ( C x. ( log ` A ) ) = ( C x. ( log ` B ) ) ) | 
						
							| 15 | 7 9 10 4 14 | mulcanad |  |-  ( ph -> ( log ` A ) = ( log ` B ) ) | 
						
							| 16 | 1 2 | rplog11d |  |-  ( ph -> ( ( log ` A ) = ( log ` B ) <-> A = B ) ) | 
						
							| 17 | 15 16 | mpbid |  |-  ( ph -> A = B ) |