| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
| 2 |
|
sbcor |
⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 3 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
| 4 |
1 3
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
| 5 |
|
df-3or |
⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
| 6 |
5
|
bicomi |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
| 7 |
6
|
ax-gen |
⊢ ∀ 𝑥 ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
| 8 |
|
spsbc |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) → [ 𝐴 / 𝑥 ] ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) ) |
| 9 |
1 7 8
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ [ 𝐴 / 𝑥 ] ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) |
| 10 |
|
sbcbig |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ↔ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) ) |
| 11 |
10
|
biimpd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) ) |
| 12 |
1 9 11
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) |
| 13 |
|
bitr3 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| 14 |
13
|
com12 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| 15 |
4 12 14
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
| 16 |
|
sbcor |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 18 |
1 17
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
| 19 |
|
orbi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
| 20 |
18 19
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
| 21 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ↔ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| 22 |
21
|
biimprd |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| 23 |
15 20 22
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
| 24 |
|
df-3or |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 25 |
24
|
bicomi |
⊢ ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| 26 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ↔ ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| 27 |
26
|
biimprd |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
| 28 |
23 25 27
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
| 29 |
28
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |