| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn1 |
|- (. A e. B ->. A e. B ). |
| 2 |
|
sbcor |
|- ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) |
| 3 |
2
|
a1i |
|- ( A e. B -> ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ) |
| 4 |
1 3
|
e1a |
|- (. A e. B ->. ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ). |
| 5 |
|
df-3or |
|- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) ) |
| 6 |
5
|
bicomi |
|- ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) |
| 7 |
6
|
ax-gen |
|- A. x ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) |
| 8 |
|
spsbc |
|- ( A e. B -> ( A. x ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) -> [. A / x ]. ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) ) ) |
| 9 |
1 7 8
|
e10 |
|- (. A e. B ->. [. A / x ]. ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) ). |
| 10 |
|
sbcbig |
|- ( A e. B -> ( [. A / x ]. ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) <-> ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) ) ) |
| 11 |
10
|
biimpd |
|- ( A e. B -> ( [. A / x ]. ( ( ( ph \/ ps ) \/ ch ) <-> ( ph \/ ps \/ ch ) ) -> ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) ) ) |
| 12 |
1 9 11
|
e11 |
|- (. A e. B ->. ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) ). |
| 13 |
|
bitr3 |
|- ( ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) -> ( ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ) ) |
| 14 |
13
|
com12 |
|- ( ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) -> ( ( [. A / x ]. ( ( ph \/ ps ) \/ ch ) <-> [. A / x ]. ( ph \/ ps \/ ch ) ) -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ) ) |
| 15 |
4 12 14
|
e11 |
|- (. A e. B ->. ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) ). |
| 16 |
|
sbcor |
|- ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) |
| 17 |
16
|
a1i |
|- ( A e. B -> ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ) |
| 18 |
1 17
|
e1a |
|- (. A e. B ->. ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ). |
| 19 |
|
orbi1 |
|- ( ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) -> ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ) |
| 20 |
18 19
|
e1a |
|- (. A e. B ->. ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ). |
| 21 |
|
bibi1 |
|- ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) -> ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) <-> ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ) ) |
| 22 |
21
|
biimprd |
|- ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) ) -> ( ( ( [. A / x ]. ( ph \/ ps ) \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ) ) |
| 23 |
15 20 22
|
e11 |
|- (. A e. B ->. ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) ). |
| 24 |
|
df-3or |
|- ( ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) |
| 25 |
24
|
bicomi |
|- ( ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) |
| 26 |
|
bibi1 |
|- ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) -> ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) <-> ( ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) ) ) |
| 27 |
26
|
biimprd |
|- ( ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) ) -> ( ( ( ( [. A / x ]. ph \/ [. A / x ]. ps ) \/ [. A / x ]. ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) ) ) |
| 28 |
23 25 27
|
e10 |
|- (. A e. B ->. ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) ). |
| 29 |
28
|
in1 |
|- ( A e. B -> ( [. A / x ]. ( ph \/ ps \/ ch ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps \/ [. A / x ]. ch ) ) ) |