| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcex |
|- ( [. A / x ]. ( ph \/ ps ) -> A e. _V ) |
| 2 |
|
sbcex |
|- ( [. A / x ]. ph -> A e. _V ) |
| 3 |
|
sbcex |
|- ( [. A / x ]. ps -> A e. _V ) |
| 4 |
2 3
|
jaoi |
|- ( ( [. A / x ]. ph \/ [. A / x ]. ps ) -> A e. _V ) |
| 5 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ( ph \/ ps ) <-> [. A / x ]. ( ph \/ ps ) ) ) |
| 6 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ph <-> [. A / x ]. ph ) ) |
| 7 |
|
dfsbcq2 |
|- ( y = A -> ( [ y / x ] ps <-> [. A / x ]. ps ) ) |
| 8 |
6 7
|
orbi12d |
|- ( y = A -> ( ( [ y / x ] ph \/ [ y / x ] ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ) |
| 9 |
|
sbor |
|- ( [ y / x ] ( ph \/ ps ) <-> ( [ y / x ] ph \/ [ y / x ] ps ) ) |
| 10 |
5 8 9
|
vtoclbg |
|- ( A e. _V -> ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) ) |
| 11 |
1 4 10
|
pm5.21nii |
|- ( [. A / x ]. ( ph \/ ps ) <-> ( [. A / x ]. ph \/ [. A / x ]. ps ) ) |