| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
1
|
sb8ef |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 3 |
|
sb8v |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 4 |
2 3
|
imbi12i |
⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 5 |
|
df-nf |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 6 |
|
pm11.53v |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 7 |
4 5 6
|
3bitr4i |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 9 |
8
|
sb8ef |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 10 |
|
sb8v |
⊢ ( ∀ 𝑥 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 11 |
9 10
|
imbi12i |
⊢ ( ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 12 |
|
pm11.53v |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( ∃ 𝑧 [ 𝑧 / 𝑥 ] 𝜑 → ∀ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 13 |
11 5 12
|
3bitr4i |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 14 |
|
alcom |
⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 15 |
13 14
|
bitri |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 16 |
7 15
|
anbi12i |
⊢ ( ( Ⅎ 𝑥 𝜑 ∧ Ⅎ 𝑥 𝜑 ) ↔ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 17 |
|
pm4.24 |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ( Ⅎ 𝑥 𝜑 ∧ Ⅎ 𝑥 𝜑 ) ) |
| 18 |
|
2albiim |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑧 / 𝑥 ] 𝜑 ) ∧ ∀ 𝑦 ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 19 |
16 17 18
|
3bitr4i |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑦 ∀ 𝑧 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |