| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝜑  | 
						
						
							| 2 | 
							
								1
							 | 
							sb8ef | 
							⊢ ( ∃ 𝑥 𝜑  ↔  ∃ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 )  | 
						
						
							| 3 | 
							
								
							 | 
							sb8v | 
							⊢ ( ∀ 𝑥 𝜑  ↔  ∀ 𝑧 [ 𝑧  /  𝑥 ] 𝜑 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							imbi12i | 
							⊢ ( ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ( ∃ 𝑦 [ 𝑦  /  𝑥 ] 𝜑  →  ∀ 𝑧 [ 𝑧  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-nf | 
							⊢ ( Ⅎ 𝑥 𝜑  ↔  ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pm11.53v | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( ∃ 𝑦 [ 𝑦  /  𝑥 ] 𝜑  →  ∀ 𝑧 [ 𝑧  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							3bitr4i | 
							⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑧 𝜑  | 
						
						
							| 9 | 
							
								8
							 | 
							sb8ef | 
							⊢ ( ∃ 𝑥 𝜑  ↔  ∃ 𝑧 [ 𝑧  /  𝑥 ] 𝜑 )  | 
						
						
							| 10 | 
							
								
							 | 
							sb8v | 
							⊢ ( ∀ 𝑥 𝜑  ↔  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							imbi12i | 
							⊢ ( ( ∃ 𝑥 𝜑  →  ∀ 𝑥 𝜑 )  ↔  ( ∃ 𝑧 [ 𝑧  /  𝑥 ] 𝜑  →  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							pm11.53v | 
							⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 )  ↔  ( ∃ 𝑧 [ 𝑧  /  𝑥 ] 𝜑  →  ∀ 𝑦 [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 13 | 
							
								11 5 12
							 | 
							3bitr4i | 
							⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑧 ∀ 𝑦 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							alcom | 
							⊢ ( ∀ 𝑧 ∀ 𝑦 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 )  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							bitri | 
							⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) )  | 
						
						
							| 16 | 
							
								7 15
							 | 
							anbi12i | 
							⊢ ( ( Ⅎ 𝑥 𝜑  ∧  Ⅎ 𝑥 𝜑 )  ↔  ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 )  ∧  ∀ 𝑦 ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							pm4.24 | 
							⊢ ( Ⅎ 𝑥 𝜑  ↔  ( Ⅎ 𝑥 𝜑  ∧  Ⅎ 𝑥 𝜑 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							2albiim | 
							⊢ ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 )  ↔  ( ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  →  [ 𝑧  /  𝑥 ] 𝜑 )  ∧  ∀ 𝑦 ∀ 𝑧 ( [ 𝑧  /  𝑥 ] 𝜑  →  [ 𝑦  /  𝑥 ] 𝜑 ) ) )  | 
						
						
							| 19 | 
							
								16 17 18
							 | 
							3bitr4i | 
							⊢ ( Ⅎ 𝑥 𝜑  ↔  ∀ 𝑦 ∀ 𝑧 ( [ 𝑦  /  𝑥 ] 𝜑  ↔  [ 𝑧  /  𝑥 ] 𝜑 ) )  |