Metamath Proof Explorer


Theorem sclnbgrel

Description: Characterization of a member X of the semiclosed neighborhood of a vertex N in a graph G . (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
dfsclnbgr2.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
dfsclnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion sclnbgrel ( 𝑋𝑆 ↔ ( 𝑋𝑉 ∧ ∃ 𝑒𝐸 { 𝑁 , 𝑋 } ⊆ 𝑒 ) )

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v 𝑉 = ( Vtx ‘ 𝐺 )
2 dfsclnbgr2.s 𝑆 = { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 }
3 dfsclnbgr2.e 𝐸 = ( Edg ‘ 𝐺 )
4 2 eleq2i ( 𝑋𝑆𝑋 ∈ { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } )
5 preq2 ( 𝑛 = 𝑋 → { 𝑁 , 𝑛 } = { 𝑁 , 𝑋 } )
6 5 sseq1d ( 𝑛 = 𝑋 → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑋 } ⊆ 𝑒 ) )
7 6 rexbidv ( 𝑛 = 𝑋 → ( ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒𝐸 { 𝑁 , 𝑋 } ⊆ 𝑒 ) )
8 7 elrab ( 𝑋 ∈ { 𝑛𝑉 ∣ ∃ 𝑒𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ↔ ( 𝑋𝑉 ∧ ∃ 𝑒𝐸 { 𝑁 , 𝑋 } ⊆ 𝑒 ) )
9 4 8 bitri ( 𝑋𝑆 ↔ ( 𝑋𝑉 ∧ ∃ 𝑒𝐸 { 𝑁 , 𝑋 } ⊆ 𝑒 ) )