| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsclnbgr2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
dfsclnbgr2.s |
⊢ 𝑆 = { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } |
| 3 |
|
dfsclnbgr2.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
2
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑆 ↔ 𝑋 ∈ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ) |
| 5 |
|
preq2 |
⊢ ( 𝑛 = 𝑋 → { 𝑁 , 𝑛 } = { 𝑁 , 𝑋 } ) |
| 6 |
5
|
sseq1d |
⊢ ( 𝑛 = 𝑋 → ( { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ { 𝑁 , 𝑋 } ⊆ 𝑒 ) ) |
| 7 |
6
|
rexbidv |
⊢ ( 𝑛 = 𝑋 → ( ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑋 } ⊆ 𝑒 ) ) |
| 8 |
7
|
elrab |
⊢ ( 𝑋 ∈ { 𝑛 ∈ 𝑉 ∣ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑛 } ⊆ 𝑒 } ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑋 } ⊆ 𝑒 ) ) |
| 9 |
4 8
|
bitri |
⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ 𝑉 ∧ ∃ 𝑒 ∈ 𝐸 { 𝑁 , 𝑋 } ⊆ 𝑒 ) ) |