| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfsclnbgr2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | dfsclnbgr2.s | ⊢ 𝑆  =  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 } | 
						
							| 3 |  | dfsclnbgr2.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 2 | eleq2i | ⊢ ( 𝑋  ∈  𝑆  ↔  𝑋  ∈  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 } ) | 
						
							| 5 |  | preq2 | ⊢ ( 𝑛  =  𝑋  →  { 𝑁 ,  𝑛 }  =  { 𝑁 ,  𝑋 } ) | 
						
							| 6 | 5 | sseq1d | ⊢ ( 𝑛  =  𝑋  →  ( { 𝑁 ,  𝑛 }  ⊆  𝑒  ↔  { 𝑁 ,  𝑋 }  ⊆  𝑒 ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑛  =  𝑋  →  ( ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒  ↔  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑋 }  ⊆  𝑒 ) ) | 
						
							| 8 | 7 | elrab | ⊢ ( 𝑋  ∈  { 𝑛  ∈  𝑉  ∣  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑛 }  ⊆  𝑒 }  ↔  ( 𝑋  ∈  𝑉  ∧  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑋 }  ⊆  𝑒 ) ) | 
						
							| 9 | 4 8 | bitri | ⊢ ( 𝑋  ∈  𝑆  ↔  ( 𝑋  ∈  𝑉  ∧  ∃ 𝑒  ∈  𝐸 { 𝑁 ,  𝑋 }  ⊆  𝑒 ) ) |